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Philosophy is one of the oldest forms of institutional knowledge
production, predating modern science by thousands of years.
Analyses of science and other systems of collective inquiry have
shown that patterns of discovery are shaped not only by indi-
vidual insight but also by the social structures that guide how
ideas are generated, shared, and evaluated. While the structure
of scientific collaboration and influence can be inferred from
co-authorship and citations, philosophical influence and inter-
action are often only implicit in published texts. It thus remains
unclear how intellectual vitality relates to social structure within
philosophy. Here, we build on the work of historians and soci-
ologists to quantify the social structure of global philosophical
communities consisting of thousands of individual philosophers,
ranging from ancient India (c. 800 BCE) to modern Europe
and America (1980 CE). We analyze the time-evolving network
structure of philosophical interaction and disagreement within
these communities. We find that epistemically vital communi-
ties become more integrated over time, with less fractionated
debate, as a few centralizing thinkers bridge fragmented intel-
lectual communities. The intellectual vitality and creativity of
a community, moreover, is predicted by its social structure but
not overall antagonism among individuals, suggesting that epis-
temic health depends more on how communities are organized
than on how contentious they are. Our approach offers a frame-
work for understanding the health and dynamism of epistemic
communities. By extending tools from collective intelligence to
the study of philosophy, we call for a comparative ''science of
philosophy'' alongside the science of science and the philosophy
of science.
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Introduction

Philosophy is one of the oldest forms of institutional knowl-
edge production, predating the emergence of modern science
by thousands of years. From ancient times to the modern
era, in societies across the globe, philosophical debate has
generated distinct schools or communities, each character-
ized by their own influential thinkers, intellectual focus, and
sociopolitical origin (1). Philosophical debates are recursive,
open-ended, and can sometimes persist across generations.
Viewing philosophical communities as cognitive ecologies
(2, 3) can offer insight into why some intellectual commu-
nities seem especially vital. From this perspective, the epis-
temic vitality of a philosophical system should depend not on
individual genius, but on the interpersonal interactions that
give rise to collective thinking (4-6). Recent work in the sci-

ence of science (7, 8) has begun to quantify these collective
processes in scientific systems, but philosophy, with its lack
of clear empirical resolutions and deeper historical record,
presents an opportunity to examine the social processes in-
volved in purely intellectual debate. What are the social ar-
chitectures that give rise to philosophical thought, and how
do they sustain or constrain its development?

Comparative philosophers and sociologists of knowledge
have developed several historical frameworks to explain the
dynamics of philosophical traditions. The 19th century
theologian and historian John Henry Newman (9) likened
philosophical systems to living organisms, gaining maturity
through sustained internal debate. The 20th century philoso-
pher Richard Rorty (10) described philosophy as an open-
ended system, sustained by “strong poets” who periodically
reinvent its discourse by introducing new metaphors for en-
during problems. At the turn of the current century, the so-
ciologist Randall Collins (11) argued that philosophical tra-
ditions are structured by competition for collective attention
among individual thinkers and their apprenticeship lineages.
Echoing these perspectives, research in social epistemology
and collective intelligence has emphasized several structural
factors that support epistemic vitality. These include the im-
portance of system-wide disagreement and diversity in gener-
ating new ideas (12, 13), the influence of radical disruptors on
the trajectory of intellectual communities (14, 15), the inno-
vative potential of peripheral actors within networks (16, 17),
and the role of individuals who bridge otherwise discon-
nected groups in enabling synthesis and discovery (15, 18).

Each of these perspectives suggests that philosophical tra-
ditions reflect both the contributions of individual thinkers
and the broader communities that structure their interactions.
It remains unclear, however, which specific features of a
community are most closely associated with epistemic vi-
tality. One family of views holds that vitality arises from
individual-level tension, disagreement, or diversity (13, 19).
According to these accounts, the most productive communi-
ties are those marked by persistent disagreement (20) or by a
high degree of individual autonomy, where thinkers are rela-
tively isolated and free to pursue independent lines of inquiry
(21, 22). Alternatively, epistemic vitality may depend on a
balance between tight-knit collaboration and intellectual dis-
tance (11, 23). Productive communities, for instance, have
been proposed to consist of a small number of highly inte-
grated groups that generate intellectual energy through com-
petition and debate (11). Synthesizing these perspectives,
recent work emphasizes the dual importance of innovation
within independent sub-communities and the role of ‘bridg-
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Fig. 1. Global philosophical communities throughout history. (A) Geographic locations of all philosophical networks included in the study. Inset shows the region of Europe
and the Middle East with the highest density of philosophical communities, although there are communities from throughout Africa, America, Asia, and Europe. (B) The
timeline of each philosophical community, with lines indicating their start and end dates. Numbers next to the lines correspond to figures in (11); the location and identity of
each numbered network is available in the Supplemental Materials. (C) An example of one network, described in (11) as, "The European Network: The Cascade of Circles,"
which lasted from 1600 to 1735 CE. Nodes represent individual philosophers (key figures labeled); edges represent intellectual relationships (solid blue = non-conflictual;
dotted orange = conflictual). Each network was divided into non-overlapping temporal periods of equal duration (indicated by horizontal black lines), following the temporal
divisions introduced in Randall Collins’s visual representations of the history of philosophy (11).

ing nodes’ — individuals or institutions that connect other-
wise disconnected subgroups — to facilitate collective inno-
vation and prevent stagnation (23, 24). Viewed this way, pro-
ductive communities should derive their vitality from struc-
tural convergence, in which different subgroups are brought
together, thus reshaping the collective dynamics of disagree-
ment.

Here, to investigate the social systems that generate epis-
temic vitality within philosophy, we analyzed a dataset of
philosophers (N = 3187 philosophers) and their intellectual
relationships (N = 5415 edges) across multiple historical
communities (/N = 55 networks) spanning over two millen-
nia (Fig. 1). We digitized these social networks from a large-
scale sociological analysis of the history of philosophy con-
ducted by the sociologist Randall Collins (11). Within these
networks — which often span multiple generations — indi-
viduals are connected through various relationships, such as
student-teacher ties, alliances, or rivalries. Each community
is thus characterized by a social network that emerges over
time from a mix of differing relationships. These networks
vary in complexity, with some containing over a hundred
nodes (philosophers) and hundreds of edges (relationships)
representing intellectual relationships between them.

Using this corpus of networks, we quantified the structure
of philosophical social networks to examine how different
patterns of connection may shape the dynamics of philosoph-
ical thought. This approach allowed us to investigate how
a network’s structure relates to the epistemic vitality of the

community. We analyzed the temporal evolution of each net-
work, investigating how structure emerges over time. Finally,
we examined how individual actors and broader community
structures have contributed to epistemic vitality throughout
the history of philosophy, showing that the temporal trajec-
tory of a community’s network structure predicts its epis-
temic vitality.

Results

Quantifying the social networks of philosophical de-
bate. Based solely on the local structure of networks, foun-
dational figures from the history of philosophy stood out
as highly influential relative to their peers (Fig. 2A). For
each philosopher, we operationalized their relative influence
within a network as their normalized degree (i.e., the number
of links to other philosophers, z-scored within each commu-
nity). As a few illustrative examples, highest-degree nodes
included Confucius, Socrates, Husserl, John Stuart Mill, and
Leibniz; Kant was second only to Schiller.

The contributions of individual philosophers, however,
will depend on the larger communities in which they are em-
bedded. We thus quantified the social structure of philosophi-
cal debate across history by characterizing each community’s
social network using a set of structural measures. These in-
cluded macroscale properties (e.g., modularity, number of
k-cores, sparsity), microscale features (e.g., peak centrality,
cyclicity, average clustering), and global distance-based fea-
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Fig. 2. Quantifying the structure of philosophical communities. (A) Influential figures were highly connected. Each point (/N = 3187) represents one philosopher’s normalized
degree (y-axis) within their community, plotted against the mean degree of that community (x-axis). Columns of points represent philosophers within a particular community.
Historically transformative philosophers (annotated) appear consistently as high-degree nodes relative to their peers. (Color indicates each community’s mean year.) (B)
Philosophical communities were highly structured. Density plots of key network measures. Measures for each network were z-scored relative to the network’s null distribution
derived from time-respecting null networks (see Methods for details). Red lines at 0 thus represent the expected value of the time-respecting null networks. (See Figure S2
for additional network measures). (C) Correlation heatmap of the same key network measures shown in (B). (See Figure S1 for additional network measures.) (D) Rank
ordering of agent betweenness centrality in vital and static networks. For each network, the agent with the nth highest betweenness centrality was identified and points
represent the group average at each rank across all networks. Static group points are slightly right-shifted, highlighting convergence between network types. Color indicates
the network’s epistemic vitality.) (E) Vital and static communities differed in network structure. Each network was embedded in a 2-dimensional structure space, created
using Principle Component Analysis. PC1 primarily captures network integration and centralization, while PC2 relates more to community fragmentation. Color indicates the

network’s epistemic vitality. Crosses represent means =+ standard errors.

tures (e.g., average path length, network diameter). These
measures tended to group into three correlated clusters re-
lated to community structure, network centralization, and
path length (Figure 2C; Figure S1; see Table S1 for descrip-
tions of each measure and their correlations).

To contextualize these measures, we generated time-
respecting null models by randomly rewiring each network’s
edges while preserving temporal structure (see Methods for
details). Philosophical networks generally exhibited greater
community structure and network centralization than ex-
pected by chance. Philosophical communities exhibited sig-
nificantly greater modularity and sparsity than their null
counterparts, with 96.2% of networks scoring above the me-
dian of their respective null distributions for both measures.
Binomial tests confirmed that the proportion of networks
exceeding their null counterparts was significantly greater
than chance for both modularity (p < 0.001) and sparsity
(p < 0.001), suggesting that philosophical communities tend
to be both well-partitioned and loosely connected. Real net-
works also contained more communities (79% above nulls,
p < 0.001), indicating a tendency toward intellectual fac-
tionalism; were more cyclical (96%, p < 0.001), reflecting
discursive feedback between scholars; and more clustered
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(68%, p = 0.006), a sign of tight-knit local interactions. Ad-
ditionally, peak centrality was higher in 70% of networks
(p=10.003), suggesting the presence of individuals who were
especially influential within their respective systems.

The network structure of epistemic vitality. We next in-
vestigated whether certain network structures facilitate philo-
sophical vitality. We classified philosophical communities
into periods of epistemic vitality or of stasis, based on the ac-
count of global philosophy in Collins’ Sociology of Philoso-
phies (11), which synthesized historical research on philo-
sophical communities throughout history. Epistemically vi-
tal periods were characterized by the emergence and synthe-
sis of new ideas, while static periods either maintained ex-
isting ideas or involved unresolved disputes that did not lead
to synthesis (Figure S3). We validated this classification of
epistemic vitality using a pretrained machine learning model
(see Methods); in the Supplemental Materials (Supplemen-
tary Note S4), we show that our results are robust to whether
we use human or machine classification of epistemic vitality.

Overall, vital and static communities did not differ signif-
icantly in size (Msiqtic = 62 vs. Myj1q1 =57, t53 =0.4,p =
.69) or number of edges (Mstqtic = 77 VS. Myirqr = 104,



ts3 = —0.9,p = .35) . The question, then, is whether these
nodes and edges were organized differently.

Several theoretical accounts suggest that a community’s
epistemic vitality is shaped by its social structure, including
factors such as interconnectedness (23), levels of disagree-
ment (20), centralizing individuals (18), and productive frag-
mentation (13). We evaluated these proposals using mea-
sures of the social network’s structure: connectivity and aver-
age degree (representing interconnectedness of each commu-
nity), peak centrality (indicating the existence of centralizing
figures), and the scaled number of sub-communities (captur-
ing fragmentation versus integration). As these they were
correlated (Fig. 2), we also reduced these variables to two
dimensions using Principal Component Analysis and exam-
ined whether networks differing in vitality occupied distinct
regions in this reduced feature space.

To test the role of interconnectedness, we examined net-
work connectivity and degree. Vital communities differed
reliably from static ones (Fig. 2D, E). Specifically, individ-
ual philosophers in vital communities were more integrated
across the whole network (network connectivity: Mgiqtic =
0.18, My;tq1 = 0.49t53 = —4.58, p =< 0.001) and were more
locally connected (average degree: Msiqtic = 1.33, Myital =
1.88t53 = —3.87,p =< 0.001).

To test the role of centralizing figures, we examined the
peak centrality of philosophers within each community. As
predicted, vital communities contained individuals who were
more centralizing (peak centrality: Msiqtic = 0.07, Myitar =
0.18t53 = —3.88,p =< 0.001). Inspection of the rank-
centrality distribution confirmed that vital communities were
characterized by a few extreme outliers who were highly cen-
tral; in the absence of those highly central individuals, the
distribution of node centrality was qualitatively the same for
vital and static communities (Fig. 2D).

Epistemically vital communities were thus more globally
integrated, more locally connected, and contained extreme
individuals who were centralizing. These three features all
loaded highly on the first principle component, which reliably
distinguished epistemically vital communities from static
ones (linear regression predicting PC1: b = 1.624 4 0.543
SE, p = 0.004; Fig. 2E).

By contrast, vital and static communities did not differ
in the tendency of philosophers to disagree among them-
selves or fragment into factions. To test the role of antag-
onism or disagreement, we examined the tendency to dis-
agree within each community (ratio of conflictual to non-
conflictual edges). Vital and static communities did not differ
in antagonism (Mgtgtic = 0.45, Myitq1 = 0.26t53 = 1.41,p=
0.19). This suggests that it is not the sheer amount of dis-
agreement that distinguishes vital communities, but rather
how that disagreement is structured. To test the role of
fragmentation, we measured the tendency of communities to
cluster into sub-communities (number of sub-communities,
scaled by network size). Vital and static networks did not
differ along this dimension (: Mgigtic = 0.19, Myitar =
0.16t53 = 1.23,p = 0.24). This measure loaded highly on
the second principal component, which did not reliably dis-

tinguish vital communities from static ones (linear regression
predicting PC2: b= 0.148 +0.285 SE, p = 0.61). Epistemic
vitality may depend less on how much communities disagree
or fragment into factions, and more on how disagreements
and sub-communities are organized to support productive
tensions at the collective level.

Thus, while philosophers in vital and static communities
were equally likely to fragment into distinct sub-communities
(PC2 in Fig. 2D), in vital communities the overall struc-
ture was more integrated and centralized (PC1 in Fig. 2D).
This is consistent with theories of epistemic vitality that fore-
ground the importance of structural coherence and centraliz-
ing figures, who can bridge communities and facilitate the
circulation of ideas across otherwise disconnected subgroups
(18, 23).

The temporal dynamics of epistemic vitality. We next
investigated the temporal emergence of these networks. To
analyze the temporal trajectory of network structure, net-
works were divided into non-overlapping temporal periods
(Fig. 1c), following the temporal divisions introduced in Ran-
dall Collins’s visual representations of the history of philos-
ophy (11). Within each network, these periods were of equal
duration, typically corresponding to approximately one gen-
eration, although sometimes of longer duration for commu-
nities that persisted for hundreds of years. To examine how
centrality and community structure shape the dynamics of
agreement and disagreement in systems with differing levels
of epistemic vitality, we analyzed how these distinguishing
measures evolved over time, including the scaled number of
communities, peak centrality, average degree, and the ratio
of disagreement to agreement. To investigate the temporal
evolution of these measures within each network, for each
measure we fit a mixed effects model, with fixed effects of
epistemic vitality, time within each community, and their in-
teraction (Table 1; see Methods for details).

Our analysis above of holistic community structure re-
vealed that epistemic vitality was associated with greater
network integration. We thus investigated how integration
emerged over the life of a philosophical community (Table
1; plotted in Supplementary Note 5.). We find that, at their
origin, vital and static networks did not differ in integration,
as measured by connectivity (effect of epistemic vitality on
connectivity at communities’ origination (b = —0.01 £ 0.08
SEM, t = —0.83,p = 0.94). Over time, however, the con-
nectivity of non-vital communities remained stable (change
over time in non-productive communities: b = —0.04 +0.13
SEM, t = —0.29,p = 0.77), while epistemically vital com-
munities became more connected (productive communities:
b=0.30£0.07 SEM, t =4.34,p < 0.001). At their culmina-
tion, therefore, epistemically vital communities were more
connected than static communities (effect of epistemic vi-
tality on connectivity at the communities’ culmination: b =
0.33+£0.13 SEM, ¢t = 2.60,p = 0.013).

There was a similar pattern for community density as
measured by average degree (Table 1 and Fig. 3A, bottom
left), with no significant difference between productive and
non-productive communities at the beginning (b = 0.29 £
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Table 1. Mixed effects model results predicting network structural measures over time.

Predictor Connectivity Avg Degree Peak Centrality Sub-Communities Disagreement Ratio
Intercept 0.23 (0.07) [3.22] 0.61 (0.14) [4.44] 0.04 (0.03) [1.22] 0.66 (0.06) [11.27] 0.63 (0.26) [2.42]
Vitality (Start)  -0.01 (0.08) [-0.08] 0.29 (0.16) [1.81] 0.06 (0.04) [1.64] -0.06 (0.07) [-0.87] 0.18 (0.30) [0.62]
Vitality (End)  0.33 (0.13) [2.60]*  0.82 (0.22) [3.75]***  0.13 (0.04) [3.31]**  -0.23 (0.06) [-4.11]***  -0.07 (0.16) [-0.42]
Time -0.04 (0.13) [0.29] 0.14 (0.21) [0.65] 0.01 (0.05) [0.25] -0.07 (0.08) [-0.87] -0.12 (0.33) [-0.36]

Prod x Time 0.34 (0.14) [2.35]* 0.54 (0.25) [2.18]*

0.07 (0.06) [1.16]

-0.18 (0.09) [-2.02]* -0.25 (0.37) [-0.67]

Note: Standard errors and t-statistics are in parentheses and square brackets, respectively. Statistical significance is indicated by asterisks (*, < .05; **, <.01, ***, <.001).
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Fig. 3. The temporal emergence of epistemic vitality. (A) Temporal evolution of network structure within cross-sectional time periods. Vital and static communities did not
differ at their origin. Over time, however, vital communities became less fractionated (scaled communities), more interconnected (degree), and contained more highly central
individuals (peak centrality). By contrast, vital and static communities had similar amounts of disagreement throughout their existence. (Lines = means; shaded ribbons
= standard errors.) See Figure S5 for additional network measures. (B) Temporal differentiation of the network structure of vital (orange) and static (green) communities.
The x-axis shows the network structure (integration and centralization) within each non-overlapping, cross-sectional time period. The y-axis shows the network structure
accumulated from a community’s origin up until that time period. This allows us to visualize the temporal evolution of network structure, both cross-sectional (x-axis) and
cumulative (y-axis). Static communities show little change over time in the integration and centralization of philosophers within a given time period (x-axis) and only a slight
increase in cumulative structure. Vital communities, by contrast, grew more integrated and centralized both with each subsequent time periods (x-axis) and overall (y-axis).

(Points = means. Shaded circles = standard errors.

0.16 SEM, t = 1.81,p = 0.080), but significantly increased in
average degree in productive communities (b = 0.68 £0.12
SEM, t = 5.5,p < 0.001), so that productive communities
had higher degree at their culmination. In other words, while
both static and vital communities begin with similar measures
of local and global connectivity, vital communities became
more integrated over time, with individual nodes being more
connected to nodes in disparate parts of their communities
and overall more connected as individuals.

Vital communities were also distinguished by by the tem-
poral emergence of centralizing individuals who connect dif-
ferent parts of the network (Table 1 and Fig. 3A, top right).
In the analyses above of the whole networks, we found that
epistemic vitality was associated with the presence of highly
centralizing figures, as measured by peak centrality. Initially,
however, both vital and static communities exhibited similar
peak centrality (centrality at origin: b = —0.06 +0.04 SEM,
t = 1.64,p = 0.11), but at their culmination the productive
communities had higher peak centrality (b = —0.13 £0.04
SEM, t = 3.31,p = 0.002). This emergent difference re-
flected a significant increase over time in the peak central-
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ity of vital communities (b = 0.08 +0.03 SEM, t =2.7,p =
0.008) but not in static communities (b = 0.01 &= 0.05 SEM,
t = 0.25,p = 0.81), though this difference was not itself sig-
nificant (b = 0.07 £ 0.06 SEM, ¢t = 1.16,p = 0.254). Thus,
while vital and static communities were equally connected by
centralizing figures at their origin, only in vital communities
do highly centralizing figures emerge who bridge divisions
and consolidate influence, occupying key positions within the
network.

Productive discourses may emerge from the merging of
many disparate communities into a few highly-concentrated
ones. Our analyses of whole networks found no associa-
tion between epistemic vitality and the tendency for individ-
uals to organize into sub-communities. The epistemic ben-
efits of tight-knit sub-communities, however, may be spe-
cific to sub-communities that co-exist within the same time
period. We thus analyzed the change over of time of sub-
communities calculated cross-sectionally (i.e., among indi-
viduals within the same time period; Table 1 and Fig. 3A, top
left). When they first originated, epistemically vital commu-
nities had the same amount of sub-community structure as



other communities (effect of epistemic vitality on number of
sub-communities, scaled by community size of temporal pe-
riod at the communities’ origination: b = —0.064+-0.07 SEM,
t = —0.87,p = 0.39). Over time, however, the community
structure of non-vital communities remained stable (change
over time in non-productive communities: b = —0.07 £ 0.08
SEM, t = —0.87,p = 0.39), while epistemically vital com-
munities gradually coalesced into a smaller number of com-
munities (productive communities: b = —0.24 + 0.04 SEM,
t =—5.63,p < 0.001). At their culmination, therefore, epis-
temically vital communities had significantly fewer commu-
nities than other communities (effect of epistemic vitality
on scaled sub-communities at the communities’ culmination:
b=—-0.23+£0.06 SEM, t = —4.11,p < 0.001). These results
suggest that while static and vital communities begin with
comparable levels of fragmentation, only vital communities
undergo a process of structural consolidation over time. This
dynamic, not reflected in the results from the static whole
network measures, arises as communities at each successive
point in time became more integrated with one another com-
pared to previous periods, showing how epistemically vital
communities became increasingly integrated across genera-
tions.

The productive and non-productive communities did not
differ along all dimensions. Some theories of epistemic vital-
ity, for instance, argue that epistemically vital communities
are characterized by high levels of disagreement (20). To
test such theories, we looked at the relative amount of dis-
agreement and agreement within each network, measured as
the ratio of conflictual edges to non-conflictual edges (Ta-
ble 1 and Fig. 3A, bottom right). We found no evidence
that epistemic vitality is associated with individual-level an-
tagonism on its own. At their temporal origination, vital
and static communities did not differ in the amount of dis-
agreement (b = 0.18 £ 0.3 SEM, ¢ = 0.62,p = 0.54). Both
types of communities typically decreased in disagreement
over time, but the amount of decrease did not differ signif-
icantly (b = —0.254+0.37 SEM, t = —0.67,p = 0.50). As
a result, at their culmination, vital communities and static
communities did not differ in the amount of disagreement
(b=-0.07+0.16 SEM, t = —0.42,p = 0.67). The amount
of disagreement on its own, therefore, is insufficient for epis-
temic vitality. Vital communities are not merely cantanker-
ous; they organize disagreement into tight-knit communities
that are connected by centralizing figures.

To synthesize these changes in network structure over
time, we projected these network measures onto the first
principal component derived from the Principal Compo-
nent Analysis of whole-network measures described in the
previous section. We did this both for network measures
calculated cross-sectionally (i.e., for each non-overlapping
time period) and cumulatively (i.e., for the entire network,
from its origin to the current time period). This yielded a
two-dimensional embedding of the network’s time-evolving
structure (Fig. 3B). At their origin, vital (orange) and static
(green) communities were indistinguishable on the basis of
their cumulative (y-axis) or cross-sectional (x-axis). Over

time, static communities changed only minimally in their cu-
mulative and cross-sectional structure, with their core struc-
tural attributes remaining largely stable (green trajectory in
Fig. 3B). In contrast, epistemically vital communities showed
consistent structural change in both their cumulative and
cross-sectional structure. As a result, at their culmination, vi-
tal communities differed significantly from static ones in both
their cumulative structure (measured at the final time point:
Mgiatic = —3.82 vs. My;tqr = —1.36, tzs = —4.78,p <
0.001) and their cross-sectional structure (Mgiqtic = —4.37
vs. Myitar = —2.08, t34 = —3.77,p < 0.001). This suggests
that philosophical vitality is associated with increasing struc-
tural integration and centralization over time, while static sys-
tems maintain a more fragmented and diffuse configuration.

Discussion

What kinds of community structures facilitate epistemic vi-
tality? By quantifying the social network structure of nearly
3,000 years of philosophical debate, we found that epis-
temic vitality is more likely to emerge in communities char-
acterized by greater interconnectedness, increasing integra-
tion, and the presence of centralizing figures. Philosophi-
cal communities were more likely to sustain epistemic vital-
ity if they consisted of integrated groups connected by cen-
tralizing figures. Diffuse communities that lacked clear in-
tellectual lineages or centralizing figures remained epistem-
ically static. While epistemically vital and static communi-
ties began with similar social structures, the features asso-
ciated with vitality, such as the presence of strong central-
izing figures and connectivity, tended to emerge over time,
pointing to the importance of bridging nodes and integrative
figures. At their origin, both vital and static communities
consisted of fragmented subgroups. But while static commu-
nities maintained this fragmentation, vital communities be-
came integrated by centralizing individuals, suggesting that
a key historical driver of epistemic vitality is the bridging
of previously disconnected perspectives into a cohesive and
“energetic” intellectual discourse (Fig. 2A) (11).

Studies of collective intelligence have proposed at least
three accounts of epistemic vitality: (1) that vital commu-
nities are sustained by persistent, individual-level disagree-
ment (12, 13); (2) that they emerge from loosely connected
sub-communities pursuing parallel lines of inquiry (21, 22);
and (3) that they depend on central actors who bridge these
communities and integrate their insights (11, 23). Our find-
ings speak to all three accounts. Our analyses of histori-
cal philosophical communities suggested that — while dis-
agreement may play a role — the structure of this disagree-
ment, rather than its mere presence, is more critical. We
also found that while most philosophical communities be-
gin with multiple sub-communities, vital communities show
evidence of consolidation of this community structure over
time time. Furthermore, this consolidation appears to be
driven, in part, by the emergence of centralizing individuals
who play a key role in linking and synthesizing across sub-
communities. Notably, the community structures associated
with epistemically vital communities differ from theories that

Moser etal. | Sociology of Ideas



emphasize sparsity and persistent discord (13). Instead, our
findings highlight the importance of restructuring over time,
where diverse interactions became increasingly integrated —
a dynamic that may guide future research in collective intel-
ligence.

Since communities can differ in their epistemic goals, dif-
ferent communities may benefit from different network struc-
tures. Philosophical traditions that emphasize “progress” or
practical application, for instance, may be more likely to pro-
duce communities marked by synthesis and centralization.
Others may prioritize the preservation of inherited systems
of thought. For instance, if a community is attempting to pre-
serve, unchanged, an older tradition of thought, then vitality
as defined here may be antithetical to this goal.

Our approach was informed by research on the role that
social structures play in shaping the vitality of other knowl-
edge systems and was thus idea-agnostic, focusing not on the
content of philosophical thought but on the structural dynam-
ics that shape how philosophical systems evolve and interact
over time (5, 25-28). We have not examined the specific con-
tent of different philosophical systems or the specific intellec-
tual role that centralizing thinkers may have played in these
systems, whether as radical innovators, synthesizers, or dis-
ruptors. This allowed us to first isolate the potential role of
network topology itself, a factor that has been implicated in
the dynamics of other epistemic systems (7, 16, 23). Future
work may help bridge this gap by incorporating the sociopo-
litical contexts and ideological contents of these traditions, as
emphasized in the original sociological analysis of Randall
Collins (11) and work in comparative philosophy (1). For
instance, to clarify how epistemic commitments manifest in
both discourse and community structure, one could integrate
community-level analyses, such as those presented here, with
natural language processing of the products of those commu-
nities (e.g., publications, letters, etc.) (29, 30).

One fertile direction for future research lies in a compar-
ative project examining structural differences between phi-
losophy, science, and other epistemic enterprises. Studies of
epistemic communities of the sort pursued here and within
the science of science could be extended to a wide range
of discursive knowledge systems, including those found in
mathematics, theology, and other so-called "thought collec-
tives" (3). Such work could help clarify whether science and
philosophy represent fundamentally distinct enterprises and
how each contributes to the broader social systems through
which humans understand and engage with the world. Such
a project holds promise to integrate the “science of science”
(8) with the “philosophy of science” (4, 31, 32) to inform our
scientific understanding of the dynamics of knowledge writ
large — a ““science of philosophy” (26-28).

Methods

Digitizing the social networks of philosophy. Networks
were digitized from Randall Collins’s comparative history of
global philosophy, The Sociology of Philosophies (11). On
the basis of historical documents, Collins reconstructed net-
works of philosophical agreement, disagreement, and master-
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pupil relationships for philosophical communities across his-
tory (N = 3187 nodes representing philosophers and N =
5415 edges across N = 55 networks). Communities in the
dataset span over 2700 years, from 800 BCE to 1980 CE;
cover a wide geographic range, stretching across Europe,
North Africa, the Middle East, India, China, and Japan, and
more; and encompassing philosophical movements from an-
cient Buddhism to modern French existentialism. In total, the
dataset includes 55 networks:

e 24 from Asia, including 10 with philosophers in an-
cient China, 7 in India, 8 in Japan, and 4 encompassing
Persian, Middle Eastern, and Central Asian thinkers,

* 30 from Europe (9 from Ancient Greece, 5 from Rome,
and the remainder spread across Western and Central
Europe) and 5 from North Africa and the Middle East,

e 1 from North America (the American Pragmatist
movement).

The dataset thus reflects a diversity of eras, regions, and intel-
lectual traditions, across multiple languages and cultural con-
texts, from Classical Chinese, Sanskrit, and Arabic, to Latin,
German, French, and English.

We digitized the network diagrams in Collins’ text (11).
For each network, two independent coders translated Collins’
visualization into a directed, weighted edge list. In each edge
list, philosophical disputes were assigned a directed nega-
tive weight (—1), master-pupil relationships received a di-
rected positive weight (+1), and acquaintances were coded
as bi-directional positive edges (41 in both directions). In
cases of coding discrepancies, a third coder adjudicated. We
also divided each network into non-overlapping temporal pe-
riods, following the temporal divisions introduced in Randall
Collins’s visualizations (11). Within each network, these pe-
riods were of equal duration, typically corresponding to ap-
proximately one generation, although sometimes of longer
duration for communities that persisted for hundreds of years.
To validate the historical accuracy of these edge lists, we
used a pretrained large language model (OpenAl’s GPT-40)
to independently assess relationships between philosophers.
The model agreed substantially with the edge lists (Cohen’s
Kk = 0.69, p < .0001; see SM Methods and Fig. S6 for de-
tails).

Collins also evaluated the epistemic vitality of each com-
munity using a comparative methodology that spanned a
large temporal and geographical range. This allows for a
bird’s eye evaluation of different philosophical community’s
relative productivity and vitality. A coder reviewed Collins’
discussion of each community and made a made a holistic
determination of the community’s epistemic vitality. To val-
idate these judgments, we used a pretrained machine learn-
ing model, OpenAI’s GPT-4o0, to independently assess the
epistemic vitality of each network using Monte Carlo cross-
validation (repeated random subsampling). We prompted the
model with a definition of epistemic vitality, along with a a la-
beled random subset of communities (75% each of vital and
static communities). Communities were described only by



name (e.g., “Network of Greek Philosophers from Socrates
to Chrysippus”) and date range. We then asked the model
to decide whether or not each of the remaining communi-
ties was epistemically vital. This process was repeated 101
times, and for each community we calculated how often it
was classified as epistemically vital by the model. This ML-
derived measure of epistemic vitality was significantly corre-
lated with the human classification of epistemic vitality clas-
sification derived from Collins (2000) (11) (r = .30,p = .02).
In the Supplemental Materials, we reproduce our main results
using this machine classification of epistemic vitality.

Quantifying network topology. For each network we cal-
culated 13 measures of structural and relational properties:
average degree, average clustering, peak centrality, connec-
tivity, flow hierarchy, average path length, network diame-
ter, sparsity, modularity, communities, cores, coreness, and
the ratio of disagreement to agreement. (See Table S1 for a
description of all network measures.) We calculated these
measures for each entire network. We also calculated the
temporal evolution of these measures within each community
in two ways: (1) cross-sectionally, for each non-overlapping
time period, and (2) cumulatively, incorporating all network
interactions from the beginning up to the given time period.

To capture variation along theoretically-important dimen-
sions of interconnectedness (23), centralizing individuals
(18), and productive fragmentation (13), we performed Prin-
cipal Component Analysis (PCA) on four key variables (con-
nectivity, scaled communities, peak centrality, and average
degree) calculated on the whole networks. The first principal
component (PC1) explained 74% of the variance. We also
used this principle component to capture the temporal evo-
lution of network structure by projecting the cross-sectional
measures and the cumulative measures on to PC1.

Time-respecting null models. For each of these growing
networks, we constructed time-respecting null models (/N =
1000) (33) in which edges are randomly shuffled while re-
specting the network’s temporal structure. To do so, edges
are shuffled using a Newman edge-rewiring algorithm (34)
in two ways. Edges between nodes within the same time pe-
riod are shuffled to connect random nodes within the same
time period. Edges between a given time period and a pre-
ceding time period (i.e., between philosophers and their pre-
decessors) are shuffled so they connect the same two periods.
This approach preserves the time-respecting nature of the net-
works and the balance of edges both within and between time
periods, while randomizing the overall network structure and
degree distribution.

Statistical analyses. To assess the structural distinctiveness
of the real networks, we calculated all measures for each
time-respecting null model and compared the real networks
to these null distributions (i.e., z-scored using the null distri-
butions).

To analyze the networks’ temporal evolution, we used lin-
ear mixed effect models to predict each measure of network
structure. Models included fixed effects for time (normalized

within each network to range from O to 1), epistemic vitality
(static = 0, vital = 1), and their interaction, and random inter-
cepts and slopes for time for each network. To estimate the
effect of epistemic vitality at the networks’ culmination (i.e.,
when time = 1), we rebaselined time so it runs from -1 (ori-
gin) to 0 (culmination). To estimate the change over time for
epistemically vital networks, we rebaselined epistemic vital-
ity (i.e., vital = 0, static = 1).

ACKNOWLEDGEMENTS
This work received support from the Institute for Humane Studies under grant
no. IHS017802 awarded to CM.

References

1. Hajime Nakamura. A Comparative History of Ideas. Kegan Paul International, London,
1992. ISBN 071030384X.

2. Edwin Hutchins. Cognitive ecology. Topics in cognitive science, 2(4):705-715, 2010.

3. Jonathan Harwood. Ludwik fleck and the sociology of knowledge. Social studies of science,
16(1):173-187, 1986.

4. Thomas S. Kuhn. The Structure of Scientific Revolutions. University of Chicago Press,
Chicago, 1962.

5. David L. Hull. Science as a Process: An Evolutionary Account of the Social and Con-
ceptual Development of Science. University of Chicago Press, Chicago, 1988. ISBN
9780226360507

6. Paul Thagard. Societies of minds: Science as distributed computing. Studies in History and
Philosophy of Science, 24(49-67):251-257, 1993.

7. Mark EJ Newman. The structure of scientific collaboration networks. Proceedings of the
National Academy of Sciences, 98(2):404—409, 2001.

8. Santo Fortunato, Carl T Bergstrom, Katy Bérner, James A Evans, Dirk Helbing, Stasa Milo-
jevi¢, Alexander M Petersen, Filippo Radicchi, Roberta Sinatra, Brian Uzzi, et al. Science
of science. Science, 359(6379):eaao0185, 2018.

9. John Henry Newman. An essay on the development of Christian doctrine. James Toovey,
1846.

10. Richard Rorty. Philosophy and the Mirror of Nature. Princeton University Press, Princeton,
NJ, 1979.

11. Randall Collins. The sociology of philosophies: A global theory of intellectual change. Har-
vard University Press, 2000.

12. Kevin JS Zollman. The epistemic benefit of transient diversity. Erkenntnis, 72(1):17-35,
2010.

13. Paul E Smaldino, Cody Moser, Alejandro Pérez Velilla, and Mikkel Werling. Maintaining
transient diversity is a general principle for improving collective problem solving. Perspec-
tives on Psychological Science, 19(2):454—464, 2024.

14. Jacob G Foster, Andrey Rzhetsky, and James A Evans. Tradition and innovation in scientists’
research strategies. American sociological review, 80(5):875-908, 2015.

15. Lingfei Wu, Dashun Wang, and James A Evans. Large teams develop and small teams
disrupt science and technology. Nature, 566(7744):378-382, 2019.

16. Jesse Milzman and Cody Moser. Decentralized core-periphery structure in social networks
accelerates cultural innovation in agent-based modeling. In Proceedings of the 2023 Inter-
national Conference on Autonomous Agents and Multiagent Systems, pages 2213-2221,
2023.

17. Peter Csermely, Andras London, Ling-Yun Wu, and Brian Uzzi. Structure and dynamics of
core/periphery networks. Journal of Complex Networks, 1(2):93-123, 2013.

18. Janet C Long, Frances C Cunningham, and Jeffrey Braithwaite. Bridges, brokers and
boundary spanners in collaborative networks: a systematic review. BMC health services
research, 13:1-13, 2013.

19. Jingyi Wu and Cailin O’Connor. How should we promote transient diversity in science?
Synthese, 201(2):37, 2023.

20. Feng Shi, Misha Teplitskiy, Eamon Duede, and James A Evans. The wisdom of polarized
crowds. Nature human behaviour, 3(4):329-336, 2019.

21. Yiling Lin, James A Evans, and Lingfei Wu. New directions in science emerge from discon-
nection and discord. Journal of Informetrics, 16(1):101234, 2022.

22. Christina Fang, Jeho Lee, and Melissa A Schilling. Balancing exploration and exploitation
through structural design: The isolation of subgroups and organizational learning. Organi-
Zzation science, 21(3):625-642, 2010.

23. Cody Moser and Paul E Smaldino. Innovation-facilitating networks create inequality. Pro-
ceedings of the Royal Society B, 290(2011):20232281, 2023.

24. James A Evans and Donghyun Kang. Lack of diffusion of popular scientific ideas marks the
presence of epistemic’bubbles’. Nature Human Behaviour, 2025.

25. Damon Centola. The network science of collective intelligence. Trends in Cognitive Sci-
ences, 26(11):923-941, 2022.

26. Pablo Contreras Kallens, Daniel J Hicks, and Carolyn Dicey Jennings. Networks in philos-
ophy: Social networks and employment in academic philosophy. Metaphilosophy, 53(5):
653-684, 2022.

27. Pablo Contreras Kallens and Jeff Yoshimi. Bibliometric analysis of the phenomenology liter-
ature. In Horizons of Phenomenology: Essays on the State of the Field and Its Applications,
pages 17-47. Springer International Publishing Cham, 2023.

28. Martin Davies and Angelito Calma. Australasian journal of philosophy 1947-2016: a ret-
rospective using citation and social network analyses. Global Intellectual History, 4(2):
181-203, 2019.

Moser etal. | Sociology of Ideas



29.

30.

31.

32.

33.

34.

Dan Edelstein, Paula Findlen, Giovanna Ceserani, Caroline Winterer, and Nicole Coleman.
Historical research in a digital age: reflections from the mapping the republic of letters
project. The American Historical Review, 122(2):400-424, 2017.

Ruth Ahnert and Sebastian E Ahnert. Tudor networks of power. Oxford University Press,
2023.

Patrick Grim, Frank Seidl, Calum McNamara, Isabell N Astor, and Caroline Diaso. The
punctuated equilibrium of scientific change: a bayesian network model. Synthese, 200(4):
297, 2022.

Karin Knorr Cetina. Culture in global knowledge societies: Knowledge cultures and epis-
temic cultures. Interdisciplinary science reviews, 32(4):361-375, 2007.

Zhuo-Ming Ren, Manuel Sebastian Mariani, Yi-Cheng Zhang, and Mat(s Medo. Randomiz-
ing growing networks with a time-respecting null model. Physical Review E, 97(5):052311,
2018.

Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. Random graphs with arbitrary
degree distributions and their applications. Physical review E, 64(2):026118, 2001.

Moser etal. | Sociology of Ideas



Supplementary Note 1: Pairwise correlations of all network metrics
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Fig. S1. Correlation heatmap of all network metrics used in the study, showing relationships among structural and community-level
features. Red indicates positive correlations; blue indicates negative correlations (Pearson’s r).
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Supplementary Note 2: Observed and null distributions of network-based structural, commu-
nity, and path length metrics
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Fig. S2. Density plots of z-scored network metrics across graphs. Metrics are categorized by variable type from correlation metrics
between all variables (Fig S1): Community (black), Centralization (gray), and Path Length (green), while dashed curves indicate null
model distributions. Dashed vertical lines mark the mean of null distributions.

Supplementary Note 3: Timeline of vital and static communities in the history of philosoph
(600BCE-1940CE
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Fig. S3. Timeline of static and dynamic philosophical spanning from 600 BCE to 1940. Vertical lines represent the middle point of each
tradition classified as either static or dynamic.
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Supplementary Note 4: Validating Epistemic Vitality

In the Main Text, we use a measure of epistemic vitality based on human annotation of Randall Collins’ global history of
philosophy (11) (hereafter, "human-judged-vitality). To validate this measure of epistemic vitality,, we used a large language
model (OpenAI’'s GPT-40) to independently classify the epistemic vitality of every philosophical community (hereafter, "ML-
vitality"). We employed Monte Carlo cross-validation (repeated random subsampling). In each iteration, the model was given a
definition of epistemic vitality along with a labeled random subset of communities (75% each of vital and static communities).
We then asked the model to classify the remaining communities as either epistemically vital or static. This process was repeated
101 times, and for each community, we calculated the proportion of runs in which it was classified as vital. These proportions
were thus a continuous measure of each community’s vitality assessment ("ML-vitality").

We first asked whether ML-vitality was consistent with the human-judged-vitality measures used in the Main Text. A linear
regression predicting ML-vitality from human-judged-vitality showed a significant positive relationship (b =0.271+0.120 SE,
p = 0.027). A Welch two-sample t-test confirmed this association, with significantly higher ML-vitality values for human-
judged-vital communities (Matic = 0.39 vs. Myita = 0.66, t53 = —2.2, p = 0.043). We thus examined whether our main
findings replicate when we use ML-vitality instead of human-judged-vitality.

At the network level, we found that ML-vitality predicted PC1 of the Principle Component Analysis of network structure,
which captures integration and centralization (linear regression predicting PC1: b = 0.894 £ 0.270 SE, p = 0.002; Fig. 2), thus
replicating the finding in the Main Text. ML-vitality did not predict PC2, which captures fragmentation and antagonism (PC2:
b= 0.051+£0.139 SE, p = 0.368), once again replicating the result in the Main Text. Likewise, we find more directly that
ML-vitality does not predict the levels of antagonism in communities (linear regression predicting antagonism: b = —0.065 +
0.057 SE, p = 0.262). Thus, epistemically vital and static communities differ significantly in their structural integration and
centralization, but not in fragmentation or antagonism, whether communities’ vitality was judged by human or ML model.

We next examined the temporal evolution of these networks. To convert the continuous ML-vitality measure into discrete
categories, we used tertile-defined categories. The temporal evolution of these ML-defined vital and static communities was
qualitatively similar to temporal evolution of human-judged categories (Fig. S4). At their culmination, ML-defined vital com-
munities differed significantly from static ones in their cumulative structure (Mg = —2.71 vs. Myja = —0.69, 35 = —3.07,
p = 0.004). However, departing from the Main Text, they did not differ significantly in their cross-sectional structure at the
very end (Mgic = —3.02 vs. Myj1 = —1.60, t34 = —1.85, p = 0.071).

Cumulative Network Structure (PC1)

Vitality
Static
Vital

Cross-Sectional Network Structure (PC1)

Fig. S4. Temporal differentiation of the network structure of vital (orange) and static (green) communities, using the first and third tertiles
of GPT-40’s continuous vitality ratings. The x-axis shows the network structure (integration and centralization) within each time period.
The y-axis shows the network structure accumulated from a community’s origin up until that time period. This allows us to visualize
the temporal evolution of network structure, both cross-sectional (x-axis) and cumulative (y-axis). Both static and vital communities
increase in cumulative structure over time (y-axis), reflecting growing integration and centralization. However, vital communities show
more consistent and pronounced changes across both cross-sectional structure (x-axis) and cumulative integration (y-axis), whereas
static communities exhibit more modest or variable shifts in network structure across time periods. (Points = means. Shaded circles =
standard errors.
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Supplementary Note 5: Temporal evolution of network metrics by epistemic vitality
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Fig. S5. Line plots of all network metrics used in the study. Shaded areas represent standard errors of the mean. Lines are grouped
by network vitality condition (Static vs. Vital).

Supplementary Note 6: Historical edge validation using LLM prediction
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Fig. S6. To validate the edge list, we combined the list of all edges between major philosophers (N = 884), or those with names in the
dataset, with a surrogate list of philosopher duos who were not connected. Approximately half of these surrogate duos consisted of
philosophers from the same network (N = 220), with the rest from different networks (/N = 275). We then queried a pretrained large
language model (OpenAl's GPT-40) about every pair, both real and surrogate, asking whether the two philosophers had interacted
or influenced each other, belonged to the same community but had not interacted or influenced each other, or belonged to entirely
different communities. There was substantial agreement between the model and the edge list we derived from Collins’s text (11);
(weighted Cohen’s k = 0.69,p < .001).
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Supplementary Note 7: Features Table

Feature Label Description Variable Type | Feature Cluster
(Whole/Temporal)
Average Clustering average_clustering, Measure of proportion of how many of a | Node average Centralization
Coefficient layer_clustering node’s neighbors are connected to one an-
other to form a complete clique.
Average Degree average_deg, Measure of the number of neighbors an in- | Node average Centralization
average_deg_layer dividual node has.
Coreness cp_ratio, cp_layer Graph-based measure of the number of | Graph-based Centralization

nodes with shortest path lengths equivalent
to the graph’s diameter to those which are

not.
Cyclicity cyclicity, The inverse of a graph’s flow hierarchy (or | Graph-based Centralization
cyclicity_layer the fraction of edges not participating in a

cycle), where a cycle is a path that starts
and ends at the same node, in a graph.

Sub-Communities communities, Number of distinct communities detected | Graph-based Community
layer_communities, in the graph using the modularity-based
comm_scale Louvain optimization procedure.

Cores cores Graph-based measure of the number of | Graph-based Community

cores in a k-core decomposition of the
graph, wherein a k-core is a group of nodes
that each possess at least k connections.

Modularity modularity, Measures the strength of division of a net- | Graph-based Community
mod_layer work into distinct communities based on
the density of edges within communities
compared to between them. Communities
were defined using the Louvain optimiza-
tion algorithm.

Size of Layer size_layer The number of nodes in a temporal layer of | Layer-based Community
a graph.
Sparsity sparsity, The number of edges in a network divided | Graph-based Community
sparsity_layer by the number of possible edges in the net-
work.
Subgraphs subgraphs, Number of connected components in the | Graph-based Community
subgraphs_layer graph, where each subgraph is a set of
nodes that are connected.
Average connectivity, Measure of the minimum number of nodes | Node average Path-based
Connectivity connectivity_layer between two pairs which must be removed
to disconnect the pair.
Average Path Length | path_length, pl_layer | Measure of the shortest number of edges | Node average Path-based
between a given pair of nodes.
Diameter diameter, The maximum eccentricity (the longest | Graph-based Path-based
diameter_layer shortest path length) in a graph.
Peak Centrality peak_centrality, The highest betweenness centrality of a | Graph-based Path-based

peak_centrality_layer | node in a graph, where betweenness cen-
trality measures how often a node lies on
the shortest paths between other nodes.

Disagreement Ratio disagreement_ratio, The ratio of antagonistic to non- | Graph-based Edge-based
layer_disagreement antagonistic edges in a graph.

Table S1. Feature descriptions and types, sorted by Feature and cluster from correlation matrices. Bolded variables are those used in
the Principal Components Analysis.
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