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Abstract 
 

Collective intelligence, broadly conceived, refers to the adaptive behavior achieved by groups through the interactions of their members, 

often involving phenomena such as consensus building, cooperation, and competition. The standard view of collective intelligence is 

that it is a distinct phenomenon from supposed individual intelligence. In this position piece, we argue that a more parsimonious stance 

is to consider all intelligent adaptive behavior as being driven by similar abstract principles of collective dynamics. To illustrate this 

point, we highlight how similar principles are at work in the intelligent behavior of groups of non-human animals, multicellular 

organisms, brains, small groups of humans, cultures, and even evolution itself. If intelligent behavior in all of these systems is best 

understood as the emergent result of collective interactions, we ask what is left to be called “individual intelligence”? We believe that 

viewing all intelligence as collective intelligence offers greater explanatory power and generality, and may promote fruitful cross-

disciplinary exchange in the study of intelligent adaptive behavior.  
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Perspective 

1. Introduction 

 

Collective intelligence, broadly conceived, refers to the 

adaptive behavior achieved by groups through the 

interactions of their members, often involving phenomena 

such as consensus building, cooperation, and competition. 

Within the last two decades, collective intelligence has 

exploded as a topic of interest within the cognitive sciences. 

Consider that from the year 2000 to 2019, there was a more 

than 5-fold increase in the appearance of the term “collective 

intelligence” in Google’s Ngram corpus; there are now more 

than 100,000 articles or books published with “collective 

intelligence” in the title; there are at least two annual 

scientific conferences dedicated to the topic; and 2022 saw 

the inauguration of a new journal called Collective 

Intelligence. In spite of this massive increase of interest in 

the topic, the present authors admit to harboring some doubts 

 

about whether collective intelligence is really a distinct 

phenomenon from the good ol’ fashioned intelligence 

cognitive scientists have long studied. Instead, individual 

intelligence and collective intelligence may be expressions 

of the same phenomena playing out on different 

spatiotemporal scales. As such, we suggest that individual-

intelligence researchers may have much to gain by drawing 

insights from collective intelligence research, while 

collective-intelligence researchers could begin to apply 

their lens to more systems that are typically not viewed as 

collectives. 

 

In their recent Handbook of Collective Intelligence, Malone 

& Bernstein (2022) write, “This book takes the perspective 

that intelligence is not just something that arises inside 

individual brains–it also arises in groups of individuals” 

(emphasis ours). Their perspective, which we take to be the 

standard view, presents individual intelligence  
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as the norm, and collective intelligence as something different 

and perhaps special (let us ignore for a moment the fact that 

the notion of “intelligence” itself has evaded any attempts to 

reach an agreed-upon definition, and suppose that “we know 

it when we see it”). But this perspective becomes problematic 

once one recognizes that individuality is also not so simple to 

define. A growing number of biologists have begun to raise 

problems with the ubiquitous assumption that organisms are 

individuals separated by clear physical boundaries (Clarke, 

2010). In many cases, upon closer inspection, we find that 

such boundaries are fuzzy and/or change over time. As 

Krakauer et. al., (2020) recently argued, individuality may be 

both a matter of degree and dependent upon the 

spatiotemporal scale of analysis—or, we would add, the 

theoretical and ontological perspectives taken. For example, a 

behavior that psychologists may describe as an expression of 

intelligence in an individual person, neuroscientists may 

attribute to the interactions between several specialized brain 

regions, each of which may be subdivided into the interactions 

of several millions or billions of neurons. Similarly, in light of 

the growing recognition of the importance of the human 

microbiome to our cognitive operations (Sarkar et al., 2018; 

Davidson et al., 2018), are we to include these trillions of 

microorganisms (our holobiont; Margulis, 1990) as a part of 

our body in order to preserve the notion of the organismal 

individual? Or are we to conclude that a single human is 

actually more like an ambulatory ecosystem? Without a clear 

definition of an individual, it is also unclear how intelligence 

is to be instantiated by one. 

We argue that it is more effective to understand intelligence 

as being collective “all the way down,” so to speak. That is, 

for any apparent individual, closer inspection may reveal its 

intelligence to be instantiated by collective dynamics on a 

lower (and sometimes higher) scale of analysis. We propose 

several advantages of this approach: First, understanding 

intelligence as primarily a process enacted by groups places 

the study of intelligence on firmer ground for empirical 

research, basing the phenomenon in observable mechanisms, 

including networks of interactions, competition and 

cooperation dynamics, and consensus building. We argue that 

any mechanistic explanation of individual intelligence must 

ultimately fall back on such phenomena, and therefore it is 

unclear what is to be gained by separating individual and 

collective intelligence into distinct categories. Second, our 

perspective leaves an opening for a truly general theory of 

intelligence, without making prior assumptions about the type 

of system by which intelligence may be exhibited. Third, our 

perspective permits an evolutionary consideration of 

intelligence, focused on how the mechanisms of collective 

intelligence may be honed over       generations to make groups 

smarter and more coherent. Fourth, this perspective may 

ultimately help to shed light on the very concept of 

individuality, which we suggest may be in part a reflection of 

the intelligence embodied in group dynamics. That is, groups 

that have honed the mechanisms of collective intelligence 

over evolutionary time may become highly entangled and 

interdependent, thereby appearing to observers as a coherent 

individual. In sum, we view intelligence as a process enacted 

by many interacting parts, rather than a property, and view the 

individual/collective distinction as a continuum, rather than a 

binary, determined by the relative interdependence of 

interacting parts. 

In what follows, we begin by considering more-or-less 

canonical examples of collective intelligence by a standard 

view, as exhibited in groups of non-human animals. Here we 

emphasize the continuity of forms of collective intelligence, 

which lays the groundwork for viewing collective intelligence 

as a spectrum (likely, a multi-dimensional spectrum). Next, 

we move on to a type of system that is not typically 

understood as an example of collective intelligence–a 

multicellular organism–and emphasize the evolution of these 

apparent individual intelligences from collective roots. Then, 

we proceed roughly “upwards” in spatio-temporal scale, 

touching upon the intelligence of brains and individual 

humans, dyads and small groups of humans, cultures or 

societies, and finally entire species, explaining how each level 

of analysis may be understood through the same general 

mechanisms of collective intelligence. In each section, we 

offer arguments and examples that push against the standard 

intuition that intelligence is typically a property of singular 

things, and thereby that collective intelligence is something 

else. In particular, we focus on the fuzzy edges and 

transitional periods wherein systems blur the line between 

being a collection of parts and acting as a unit. These 

examples suggest, on the one hand, that researchers of so-

called individual intelligences may benefit from grappling 

with the fuzziness of individuality, towards which many 

insights can be found in the literature on collective 

intelligence. On the other hand, these examples also suggest 

that collective intelligence researchers may benefit from 

recognizing that their typical phenomena of interest are not 

necessarily distinct from phenomena that are typically 

attributed to individuals. 

Our approach here is a form of argument-by-elimination: If it 

can be seen that mechanisms of intelligence at every level of 

analysis are best understood as collective behaviors, what is 

left to qualify as individual intelligence? Ultimately, we 

suggest that human brains occupy one end of a gradient in 

which a collective has become exceptionally interdependent, 
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but that nonetheless operates according to mechanisms of 

collective intelligence that are present across species and 

scales of analysis. We hope that these considerations may help 

students of individual intelligence to recognize the value of 

seeing their phenomena of interest as emerging from 

collective dynamics, while simultaneously encouraging 

students of collective intelligence to recognize how 

collectives may come to act as individuals. 

 

2.    Collective intelligence in non-human organisms 

The mind, and by extension intelligence, has traditionally 

been thought of as something possessed by individuals. 

However, eusocial insect colonies challenge the idea of 

intelligence as exclusively a property of an individual 

(Theiner, 2014). Colonies of ants, bees, and termites clearly 

display vastly greater and sometimes qualitatively distinct 

abilities compared to the individuals that they are composed 

of (Sumpter, 2006). Moreover, the intelligence of these 

collective units cannot simply be characterized as the sum of 

the intelligences of its constituents. The collective cognition 

and decision-making of the colony is determined by the 

interactions between the individuals, resembling mobile 

neural networks, and the algorithms that determine their 

output (Couzin, 2009). Thus, one approach to reconcile the 

intelligence of these colonies with individual intelligence may 

be by considering colonies as superorganisms (Wheeler, 

1920) that parallel the intelligence and cohesive unity of a 

multicellular organism. 

A common argument in favor of comparing a eusocial insect 

colony to a multicellular organism has been the high genetic 

relatedness among the components of the system – cells of an 

organism and individual members of a colony. High 

relatedness of individuals enabled by haplodiploidy among 

hymenopterans such as ants and bees was originally thought 

to be an important constraint for the evolution of eusociality 

(Hamilton, 1964; Trivers & Hare, 1976). However, some 

eusocial animals such as termites and naked mole rats do not 

have a haplodiploid genetic system (Thorne, 1997; Anderson, 

1984) and some eusocial wasps and bees may not even have 

high relatedness (Brand & Chapuisat, 2016; Landi et al., 

2003). Hence, resembling an organism in terms of genetic 

identity of constituent elements does not appear to be critical 

to the cohesive functionality of a colony. 

Some species of animals can also switch between forming 

cohesive groups and existing as independently foraging 

individuals. For instance, cellular slime molds exhibit both a 

solitary phase where they exist and reproduce as individual 

cells and a social phase where unrelated cells collect together 

and appear to transform into a multicellular organism where 

many of them forfeit reproduction (Sussman, 1956).  

Similarly, many grasshopper species live as individuals where 

they avoid other conspecifics and forage alone, but under 

certain conditions, undergo behavioral and morphological 

change to become gregarious locusts that migrate over large 

distances, foraging as a group (Pener & Simpson, 2009). 

These changes to collectives are typically associated with high 

densities and patchiness of resources, where coming together 

allows individuals to disperse across larger distances and 

forage more efficiently (Nauta et al., 2022). This is suggestive 

of evolution favoring the switch between individual and 

collective intelligence based on the ecological context, 

allowing species to persist in different conditions. 

The distinction between collective groups and solitary 

individuals is also not a clear binary. The extent of sociality 

exhibited by animal groups exhibits continuous variation 

between obligate eusocial colonies where some individuals 

forfeit reproduction to temporary associations of animals that 

come together for performing a task. This includes fission-

fusion groups of fish and birds that may forage independently 

but roost together or converge under predation threat (Smith, 

1995; Cote et al., 2013). However, facultatively social groups 

can also display collective intelligence in tasks ranging from 

spatial navigation to light-gradient sensing (Sasaki & Biro, 

2017; Puckett et al., 2018). Indeed, even groups of birds and 

fish with population turnover across generations can learn 

important tasks such as foraging puzzles and maintain 

traditions of mating sites (Chimento et al., 2021; Warner, 

1988), reminiscent of human cultures (discussed in a later 

section). This goes against the idea that only temporally 

cohesive units may display intelligence. 

Furthermore, groups are not always formed by individuals of 

the same species (Sridhar & Guttal, 2018) and some such 

interspecific groups can cooperate to hunt together, thereby 

increasing their predation success (Bshary et al., 2006; 

Diamant & Shpigel, 1985). Thus, the wide variety of animal 

collectives found in nature that can operate intelligently 

contradicts the notion that intelligence is an aspect or trait of 

a spatiotemporally cohesive unit composed of relatively 

identical subunits. 

Finally, while most of the examples reviewed above concern 

instances of cooperation between individuals, in some cases 

competitive dynamics both external and internal to a group 

can also lead to collective intelligence. For example, 

collective motion in schools of fish is often attributed to 

individual predator-escape movements combined with 

intragroup influence in heading direction (Lopez et al., 2012). 
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However, in some mass-migrating insects like locusts, 

cannibalism may drive intragroup pursuit and escape behavior 

that leads to collective motion (Romanczuk et al., 2009). 

Nonetheless, in both cases collective motion may lead to 

adaptive behaviors at the group-level (e.g. successful predator 

avoidance in the case of fish; migration to better resource 

patches in the case of locusts) that would be unachievable by 

individuals. 

To summarize this section, collective intelligence in non-

human animals is a highly diverse phenomenon, displayed by 

groups with many different types of individuals, in many 

different ecological contexts, driven by many different types 

of interactions between individuals, and encompassing many 

different types of intelligent behaviors (e.g. migration, search, 

and foraging; predator avoidance; niche construction; 

memory; decision making). In some cases, intelligent 

collectives are composed of closely genetically-related 

individuals, in others by more distantly related individuals, 

and sometimes even among individuals of entirely different 

species. In some cases, obeisance to a collective is universal 

in a species, while in other cases, individuals may switch 

between foraging alone and participating in a collective. 

Sometimes, collective intelligence appears driven by 

cooperative behaviors, other times by relatively selfish 

behaviors (e.g. individual predator avoidance) combined with 

social influence, and still others by entirely competitive 

behaviors (e.g. cannibalism). Thus, the system requirements 

for collective intelligence can only be stated at a quite abstract 

level: (1) a group of individuals, (2) a mechanism of 

interaction between them, that (3) leads to self-organization 

of the group towards (4) behaviors that are adaptive for the 

group (echoing a characterization of “complex systems” from 

Ottino, 2004). Given that natural selection is not picky about 

the micro-level details that instantiate these requirements, it 

should come as little surprise that similar dynamics occur at 

many different scales of analysis, as we will describe in the 

next sections. 

3. Multicellular collective intelligence 

The paradigm example of biological individuality is a 

metazoan animal. Despite increasing difficulties, related, for 

example, to the concept of holobiont mentioned in the 

introduction—the ecological unit formed by symbiosis 

between a host organism and the many microorganisms that 

live in and around it (Margulis, 1990)—the dominant 

assumption is that we want our theories of individuality to 

regard humans, frogs, sharks and cnidaria as individuals. 

However, at a sufficiently fine-grained level, there is no doubt 

that they do constitute highly integrated collectives of small 

living organisms – cells, of an astounding variety of types. 

Hence, the standard approach in the research on the evolution 

of multicellularity in the history of life on Earth, has been to 

ask how groups of (unicellular) organisms become 

(multicellular) individuals. The question has been put forward 

this way for decades, in fact reiterated at multiple levels: the 

seminal work of (Smith & Szathmáry 1997) discusses 

evolutionary “major transitions”, asking about the subsequent 

evolution of chromosomes from individually replicating 

nucleic acids, of eukaryotes from independently living cells 

that developed into mitochondria and chloroplasts, of 

multicellulars from single-celled organisms and eventually of 

social groups, most importantly insect colonies, which 

transmit genes only together. This multiscale framing of the 

question places the point of the switch from unicellular mode 

of life into obligatory multicellularity in a doubly important 

position: as it can both offer insight into the emergence of 

sociality and become enlightened by the studies of collectivity 

in multicellular organisms. One way to disentangle this co-

dependence is to approach the problem of the emergence of 

obligatory multicellularity through the lens of the concept of 

collective intelligence, as introduced above in previous 

sections of this paper. 

Michael Levin and Daniel Dennett have proposed the phrase 

“cognition all the way down” (Levin & Dennett, 2020) to 

frame this approach. They propose to model individual cells 

in the multicellular collective as intelligent agents on their 

own, that coordinate (likely via bioelectrical communication, 

see: Levin, 2019, p. 17; this hypothesis is supported by the 

fact that bacterial biofilms use equivalents of neural ion 

channels to communicate, see: Prindle et al., 2015) to form a 

“compound” intelligence. In doing so, Levin puts forward a 

quite general definition of intelligence as the degree of 

competence in navigating spaces (Fields & Levin, 2022): both 

physical 3D space, as well as less standard kinds of spaces, 

such as morphospaces (space of possible morphologies, 

explored in morphogenesis), transcriptional spaces (explored 

by mRNA), and physiological spaces (explored by ion 

channels).  

This agentive characterization of cells in a multicellular 

system has been concurrently proposed by Arnellos & 

Moreno (2015) who specifically investigate the shift from 

agency of individual cells into the agency of the collective 

they constitute. Levin uses the concept of “computational 

boundary”, referring to the spatiotemporal limits of 

information processing of a system to describe the change that 

occurs during this shift: he proposes to view compound 

intelligences (e.g. collectives of cells forming a multicellular 
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organism, but also insects forming a colony) as expanding 

individual organisms’ computational boundary, allowing 

them to process information referring to more distant events, 

both in time and space. Fields & Levin (2019) have suggested 

that this might be in fact what has driven the evolution of 

somatic multicellularity: organisms in which non-

reproductive cells “protect” their parents capable of 

reproduction might profit from the extended computational 

boundary and be able to protect themselves from a wider 

range of environmental threats. This view of collective 

behavior as expanding the computational boundary of 

organisms allows one to notice many similarities across scales 

and species involved in collective behavior. For example, 

work by Cavagna et al. (2010) suggests that collective motion 

in starling flocks provides “each animal with an effective 

perception range much larger than the direct interindividual 

interaction range, thus enhancing global response to 

perturbations.” 

 

Morphogenesis, the processes of development of shape in 

living organisms, is a model example of the collective agency 

and information processing of multicellular systems. All 

living organisms undergo this process during development, 

but it takes its most complex form in multicellular organisms, 

where individual cells must orchestrate the process together 

and physical forces such as tension or nuclear forces have a 

less direct impact. Furthermore, some organisms are capable 

of re-initializing morphogenesis to restore their body shape 

after injury, regrowing entire limbs (Choi et al, 2017) or even 

non-skeletal elements including, in the case of the flatworm, 

the entire head and brain (Gentile et al., 2011). To achieve this 

goal, cells need to solve a plethora of distinct problems: they 

need to migrate to specific places in a developing organism, 

initiate processes of cytodifferentiation in appropriate ways 

depending on their location, and finally they need to stop 

differentiation and division at a suitable moment, when the 

target morphology has been achieved–a moment that none of 

the cells have direct information about. 

As research shows, this process is incredibly versatile and 

robust: consider studies conducted by the Levin lab in which 

scientists modified tadpoles of African frog Xenopus laevis, a 

model organism in developmental biology, by scrambling the 

positions of their facial organs (Vandenberg et. al., 2012). 

Astonishingly, over the course of the development into an 

adult organism, the morphogenetic “program” was adaptively 

modified: the organs moved in novel ways to ultimately 

achieve morphology in line with the standard adult 

morphology. In another experiment, tadpoles were surgically 

implanted with an additional eye located ectopically on the 

tail, transplanted from another frog (Blackiston & Levin, 

2013). In a significant portion of those animals, an optic nerve 

has developed from donor tissue connecting to host locations: 

either towards the stomach or through the trunk and towards 

the spinal cord. A few of those cases had the nerve terminating 

at the spinal cord. In those cases, the transplanted eye allowed 

the animal to see, as researchers have shown through an 

associative learning task (Blackiston & Levin, 2013). This 

shows that morphogenesis is not a simple implementation of 

a pre-set recipe (of a form ‘move cell X distance Y in the 

direction Z’), but rather that cells react to their environment 

in a way that is appropriate, even if the circumstances widely 

differ from normal. 

 

The forms of obligatory multicellularity, recapitulated above, 

have been more difficult to understand for bioresearchers, as 

they require an apparently non-adaptive behavior from cells 

that develop into somatic cells, voiding the evolutionary 

imperative of transmitting genes to future generations. They 

become unable to continue a life independent of the group that 

they now form. While the metazoan animal is the most 

obvious example, other forms of this type of collectives exist 

as well: for example, some genera of the volvocine algae 

(Volvox carteri is a standard example, as a model organism 

with a fully sequenced genome) form colonies comprised of 

about 2000 somatic cells, creating a spherical monolayer, and 

about 16 germ cells which lie just below this sphere (Kirk, 

2005). The colonies are motile, with an anterior-posterior 

axis, and with hollow interiors hosting the embryogenetic 

processes of the next generation. V. carteri offers a unique 

glimpse into evolution of multicellularity, with just two cell 

types and a much shorter history of multicellular lifestyle than 

eukaryotic groups (about 30-70 million years compared to 1 

billion; Kirk, 2005). In the lineage of its closest unicellular 

ancestors, Chlamydomonas reinhardtii, there are four other 

extant volvocine genera, traditionally arranged in a conceptual 

series along their increasing cell number, size, and the 

tendency to develop sterile somatic cells. Some of its close 

relatives (e.g., various species of Gonium), while they do have 

a multicellular lifestyle, retain the reproductive abilities in all 

cells. More distant organisms, however, have more 

complicated lifestyles in which they switch between uni- and 

multicellular stages. This is the case for many multicellular 

slime molds (e.g., Dictyostelium discoideum, already 

mentioned in the previous section) where individual cells 

forage and reproduce normally if food is available, and when 

the supply is exhausted, they switch into a multicellular mode, 

where they assemble into a pseudoplasmodium, a slug-like 

structure which has an anterior-posterior axis, responds to 

light and temperature gradients, and can migrate (e.g., Kitami, 
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1982). Interestingly, the non-obligatory type of 

multicellularity is possible to replicate in the lab by inducing 

specific selection pressures (Bozdag et al., 2021; Ratcliff et 

al., 2012). 

Hence, the variety of multicellular systems is connected 

primarily by fact that they exhibit the joint action and 

information processing as a single, complex system—rather 

than by factors which likely appear only as the forms of 

multicellularity increase in complexity, such as the cell type 

division of labor. The benefits of the framework like the one 

offered by Levin, which takes individual cells to exhibit some 

levels of intelligence and the emerging multicellular system 

to exhibit a “collective” or “compound” intelligence is clear 

in the case of morphogenesis. Furthermore, we can use this 

approach to help clarify some of the extant debates in 

cognitive science and philosophy of mind, such as the dispute 

between proponents of a computational theory of mind and of 

embodied accounts of cognition. This is possible through the 

concept of “morphological computation” (see Rorot, 2022) 

which offers a bridge between the two theories by focusing on 

the forms of computation and intelligence exhibited by 

bodies, from the level of individual cells all the way up to 

highly complex human brains, as we highlight in the 

following sections. 

4. Brains as intelligent collectives 

If our reader were to do a quick image-search for the word 

“intelligence,” what you will see are human brains; lots and 

lots of brains. The brain is, of course, our archetype of 

intelligence. But what makes brains intelligent? For many 

cognitive scientists and laypeople alike, brains are intelligent 

because they are like computers, with neural circuits 

implementing logical operations over stored representations 

or symbols, served up to a “central executive.” In this vein, 

evolutionary psychologists describe the evolution of human 

intelligence as the evolution of computational “modules” 

selected to solve specific problems for the individual 

organism. From this perspective, the brain evolved as a 

coherent whole, adding functions one at a time.  

But such a view belies the complex evolution of the nervous 

system. Before the existence of a central nervous system as 

found in modern mammals, there were nerve nets of the kind 

found in jellyfish and octopuses—diffuse, homogenous 

networks of interconnected neurons that extend throughout 

the entire body with no central controller (Arendt et al., 2015). 

Prior to the nerve net, there was the emergence of synaptic 

signaling in colonial single-celled eukaryotes, such as Obelia 

(sea fur; Dunlap et al., 1987). Prior even to the existence of 

synaptic communication, there was the emergence of 

coordinated behavior of multicellular organisms through 

purely mechanical means. For example, recent research from 

(Prakash et al., 2021) on Trichoplax has revealed that the local 

mechanical interactions of millions of cilia produce 

coordinated “walking” behavior and even thermotaxis, with 

mechanical signals propagating much like electrical signals 

do in nervous systems. And finally, prior to coordinated 

behavior of obligatorily-multicellular organisms like 

Trichoplax, there was the emergence of temporary 

coordinated collectives, such as the way that single-celled 

Choanoflagellates cluster together under conditions of stress, 

forming cup-shaped colonies that can rapidly flip inside out to 

move as a unit (Brunet et al, 2019). From our perspective, the 

evolution of brains is not primarily a story of a coherent 

“computer” that incrementally adds specialized modules. 

Instead, it is a story of increasingly coordinated collective 

behavior, driven by the emergence of more efficient forms of 

intercellular communication, increasing differentiation and 

specialization of cell types, increasing interdependence, and 

progressive refinement of organization. At each stage, the 

benefits achieved through cooperation must have outweighed 

the costs of increased competition for resources that comes 

with sharing territory. Thus, we view brains as one end of a 

continuum of collective behavior wherein the collective has 

become especially coordinated and complex in organization.  

At this point, a skeptic of our view might suggest that the 

evolution of brains along such a trajectory has, at some point, 

crossed a threshold or exhibited a phase-transition of some 

kind, whereby it is now more useful to understand a brain as 

a coherent unit driven by logical operations, rather than 

collective dynamics. We present three arguments against such 

a conclusion. First, consider that despite being an incredibly 

coordinated system, competitive dynamics remain a key 

aspect of the success of brains. For example, early 

development of humans is characterized by a period of 

synaptogenesis in which neurons are overproduced, followed 

by a period of neural pruning, driven by competition for input. 

Neural structure is not hard-coded into the genes—indeed, 

there couldn’t possibly be enough information in the human 

genome to encode neural structure (Zador, 2019)—but instead 

is robustly reproduced time and again through these 

competitive dynamics. Malfunction of these processes (i.e., 

overproduction of neurons or lack of pruning) is associated 

with a number of brain disorders. Along these lines, 

proponents of “Neural Darwinism” (Edelman, 1993) and 

related views suggest that brain development, and intelligence 

more generally, can be understood as analogous to the 

evolution of a species through variation and selection. 
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Competitive dynamics are also important at the level of 

behavior and decision-making. Consider that, in connectionist 

models of cognitive functions, the competition (i.e. mutual 

inhibition) of localist representations is a crucial mechanism 

for determining an output, which may represent an 

interpretation of a stimulus or a choice between two or more 

mutually-exclusive response options. Neuroimaging studies 

on bi-stable perceptions of ambiguous figures, such as the 

duck/rabbit figure, have established analogous processes of 

competition between distinct populations of neurons (Seely & 

Chow, 2011). In sum, competitive dynamics are crucial both 

in brain development and in “online” cognition and behavior. 

We suggest that it is the precise parameterization of such 

competition dynamics that contributes to the intelligence of 

the brain. As such, we believe these mechanisms are best 

understood as a form of collective decision-making. 

Second, despite the complex, heterogeneous structure of the 

brain into distinct regions, research in the past several decades 

has begun to reveal that the brain is far less functionally-

modular than previously thought. That is, the brain is 

characterized by a high-degree of “interactivity”—constant 

cross-talk between regions traditionally associated with 

specific functions such as vision, language, action, emotion, 

and more (Falandays et al., 2020). Neuroscientists are 

increasingly abandoning the goal of localizing brain 

functions, instead moving towards network-based approaches 

(Pessoa, 2022). Each region of the brain is now thought to be 

involved in a multitude of processes, and coordinates with 

different partners depending upon the context, forming 

temporary “functional networks”—what Anderson (2014) 

refers to as TALoNS: “transiently active local neuronal 

subsystems”. Functional networks are known to form and 

dissipate rapidly—on the order of milliseconds in visual 

processing (Wu & Sabel, 2021), or on the timescale of 

minutes in skill acquisition (Bassett et al., 2011)—in a process 

that is often called “soft-assembly” (Kello & Van Orden, 

2009). This process is best understood as a form of self-

organization, in that the best functional network for a task or 

context comes online through distributed interactions, rather 

than by virtue of a central executive that assembles the best 

neural partners after assessing a situation. Indeed, it would be 

nonsensical to suggest that such a task could be accomplished 

by a central executive, in that it would assume that the central 

executive somehow knows the nature of the task to be 

accomplished; in other words, it would require a homunculus. 

We suggest that the dynamic reorganization of functional 

subnetworks in the brain and the massive interactivity of the 

brain is best understood through the lens of collective 

intelligence, akin to a crowd that efficiently forms an effective 

committee for each task on the fly.  

Third, consider that, in the dominant view of the brain as a 

computer, neurons (or populations thereof) are subordinated 

to the role of carriers of “representations.” If this view of 

neural activity were accurate, it would be understandable to 

see the brain as an example of individual intelligence, in that 

the lower-level parts (neurons) exist just to serve up 

representations to a central executive, and the activity of 

neurons should track the mental operations of that central 

executive. Leaving aside the philosophical arguments against 

such an interpretation of brain activity (Dennett, 1978; 

Bickhard, 1996; Brette, 2019), there are also empirical 

reasons to reject the premise of neurons as vehicles of 

representation. Consider the phenomenon of “representational 

drift,'' wherein the correspondences between neural activity 

and stimulus properties may change dramatically over the 

period of days or weeks (Rule et al., 2019; Schoonover et al., 

2021; Deitch et al., 2020). For example, a study by Driscoll et 

al. (2017) found that the responsiveness of cells in the 

posterior parietal cortex (associated with spatial navigation) 

of rats navigating a T-maze changed dramatically across 

testing days, despite the rats exhibiting continuous mastery of 

the maze. Results such as this suggest that, if neural activity 

were to effectively encode or represent features of the world, 

the brain would also need to accurately track continuous 

changes in its encoding scheme—today, a population firing 

may mean “red,” tomorrow it may mean “green.” Such an 

inefficient encoding mechanism strikes us as highly 

implausible. 

But the instability of neuronal activity in response to stimuli 

becomes much less problematic if one abandons the view of 

neural activity as representational, instead focusing on the 

brain as primarily a controller for action. There are many 

neural pathways that may produce the same outcome, and 

therefore the brain need not worry about reproducing stable 

response patterns so long as the overall outcome is the same. 

Furthermore, as each action results in a change to sensory 

information, and as the brain continually reorganizes in 

response to its own activity, it may in fact be necessary to 

change firing patterns in order to achieve stable outcomes. 

That is, given a different state of the neuronal milieu at two 

points in time, distinct patterns of activity will be needed to 

achieve an identical outcome in behavior. Like the ship of 

Theseus, the brain is capable of maintaining higher-order 

stability despite continuous exchange of its constituent parts. 

We contend that such dynamics are representative of 

collective intelligence, rather than of centralized intelligence 

as exemplified in the computer metaphor of mind. 

Some recent empirical work exploring the learning 

capabilities of homogenous cultures of brain cells may speak 
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to self-organizing capacities of neural systems described 

above. Kagan et al., (2022) grew cultures of rodent and human 

cortical cells on high-density microelectrode arrays and 

embedded these cultures into a feedback loop for the classic 

arcade game “Pong.” One arbitrary subset of the network was 

designated as sensory neurons, and provided stimulation 

dependent upon the position of the pong ball, while another 

subset was designated as output neurons, and used to control 

the position of the two paddles. The authors found that such 

networks were able to self-organize based on this feedback 

loop, improving performance with as little as five minutes of 

training. A similar, earlier paper from Masumori et al., (2015) 

showed that cortical cultures could also be used to control a 

moving robot that learned to avoid walls. Work such as this 

suggests that the intelligence of brains is due not to precisely 

designed neural circuits that implement specific 

computations, but instead due to an intrinsic capacity for 

collections of neurons to spontaneously organize in service of 

survival of the group.  

Importantly, self-organization of neural cultures can emerge 

from purely “selfish” neurons, acting only in the interest of 

individual survival. A recent artificial neural network model 

from Falandays et al., (2021) illustrates one possible 

mechanism by which this could occur. Their model is 

composed of allostatic nodes, which seek to keep their own 

activation level near some variable “target” level, which has a 

minimum. That is, each node needs some input in order to 

survive, but can adjust internal parameters in order to handle 

greater amounts of input if necessary, just as real neurons can 

modify synaptic receptors or membrane potentials to adapt to 

local resource availability. However, sudden over-stimulation 

is also a threat to survival, so nodes have a strategy available 

to dissipate energy rapidly when needed: they may spike, 

spreading some of their energy to connected neighbors. While 

spiking behavior is therefore a kind of “emergency” survival 

mechanism for each individual, opportunistic neighboring 

nodes may learn to depend upon these spikes to accumulate 

resources for their own survival. 

Falandays et al. (2021) fed this network inputs generated by a 

probabilistic grammar, with only a subset of the network, 

designated as “sensory nodes,” receiving external stimulation 

from each “word” in the grammar. Thus, in order to keep 

activity near their target level, non-sensory nodes need to 

recruit input from externally-stimulated neighbors. However, 

even sensory nodes won’t be stimulated on every timestep, so 

all nodes need to form coalitions with their neighbors such 

that they will receive excitatory input when their own activity 

is low, and inhibitory input when their own activity is high. 

With only local learning rules that allow each node to adjust 

weights with neighbors and their own activity-targets, the 

network rapidly reaches an equilibrium in which most nodes 

are successfully keeping activity levels stable over time, 

despite a dynamic input signal.  

Examination of the activity of the network at this point reveals 

that each node, acting in the interest of its own survival, results 

in apparently intelligent behavior at the global level. For 

example, correlating the activity of the network in response to 

the input signal reveals pseudo-population codes that capture 

features of the input including the exact word, the 

grammatical class, and the position of the word in a sentence. 

The dynamics of the network even appear to predict the input 

signal: when input is suddenly shut off, the network 

endogenously produces a pattern of activity that resembles the 

population-code for the most-likely next input. Note, 

however, that the authors call these pseudo-population-codes 

because any correspondences between network activity and 

stimulus features were found to drift around in the network 

over time, such that stable correlations could only be found in 

short time-windows of observation, akin to the phenomenon 

of representational drift mentioned above. The authors take 

this to suggest that the anticipatory behaviors of the network 

arise without the formation of stable internal representations 

of the kind that would be expected under a computational 

view of brain activity. 

Furthermore, the collective intelligence of these nodes 

appears able to generalize to very different tasks. In more 

recent work, Falandays, Yoshimi, Warren, and Spivey (under 

review) have embedded this network into the action-

perception loop of a simple agent presented with a moving 

visual stimulus. They found that the same local, allostatic 

learning rules produce spontaneous object-tracking behavior, 

with the agent moving so as to keep a stimulus stable in its 

visual field, as well as wall-avoidance behavior (akin to the 

findings of Masumori et al., 2015) and Pong-playing abilities 

(akin to the work of Kagan et al., 2022), despite having no 

explicit incentive to engage in these behaviors. That is, these 

behaviors emerge naturally from the local drive for 

homeostasis in the context of a network.  

The foregoing discussion illustrates how apparent intelligent 

behavior, such as language processing or visual object-

tracking, may emerge from collective dynamics of 

cooperation and competition, with each neuron interested only 

in its own survival. Although the brain has evolved into a 

highly complex, specialized, differentiated organ, we suggest 

that these features were selected primarily due to their role in 

facilitating mechanisms of collective intelligence. In other 

words, the structure and development of the brain is 
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characterized by highly efficient and robust mechanisms of 

competition, cooperation, consensus building, and dynamic 

reconfiguration of neural coalitions. When all goes well, these 

mechanisms may be so effective that we may be tempted to 

think of brains as akin to a man-made computer, performing 

logical operations over internal representations or symbols. In 

some cases, the collective dynamics of brains may in fact 

approximate what would be done by a man-made computer 

on a similar problem. Nonetheless, we suggest that thinking 

of the brain as a computer obscures the actual mechanisms by 

which it solves problems. In contrast, viewing the brain as an 

intelligent collective may offer more both in the way of 

explanatory mechanisms of individual human cognition, and 

towards understanding general principles of intelligence 

across species or scales of analysis. Humans may have much 

to learn from neurons about constructing harmonious 

societies. 

5. Collective intelligence in dyads/small groups 

For readers familiar with the literature on collective 

intelligence, it may have seemed odd for us to begin our 

discussion with examples of intelligent behavior in groups of 

non-human animals, cells, and brains—after all, the term is 

most often applied to one system in particular: groups of 

humans. This tendency towards anthropocentrism in 

collective intelligence research is driven, in part, by the 

reasonable fact that human researchers prioritize solving 

human problems: how to make society or government better, 

fairer, or more harmonious, how to make teams more 

efficient, and the like. On the other hand, anthropocentrism 

may also be driven by a bias towards thinking that we humans, 

individually, are the only really intelligent creatures on the 

planet, and thus the only true form of collective intelligence is 

among us already-intelligent humans. But as we turn now 

towards consideration of human collective intelligence, we 

hope that having the foregoing discussion in mind will help 

persuade the reader that the dynamics of collective 

intelligence in humans share deep commonalities with those 

other systems. We emphasize that collective intelligence in 

humans actually has little to do with how intelligent we are as 

individuals, and instead to the extent to which we are 

evolutionarily prepared for spontaneous interpersonal 

coordination. As we saw in the last section that our brains—

themselves intelligent collectives—adaptively resonate to 

patterns of stimuli in the environment, consider that 

sometimes that environment contains other humans. Thus, 

when multiple humans observe and interact with one another, 

they may become intertwined in a sensorimotor feedback 

loop, leading the group to exhibit complex, coordinative pat- 

terns, without requiring any individual to do anything all that 

intelligent in a traditional sense (e.g. planning, reasoning, 

storing information). 

Over the last two decades, a large body of literature has 

amassed demonstrating that individuals engaged in 

conversations or joint tasks tend to spontaneously align their 

linguistic behaviors and synchronize many rhythms of the 

body. For example, it has been found that, over the course of 

some types of interactions, individuals entrain their neural 

oscillations (Montague et al., 2002; Konvalinka & Roepstorff, 

2012), their postural sway (Shockley et al., 2003) and other 

movements (Richardson et al., 2007; Schmidt & O’Brien, 

1997). Individuals also align their speech patterns at the level 

of pronunciation (phonetic convergence; Pardo, 2006), word 

choice (lexical alignment; Branigan et al. 2011), grammatical 

structure (syntactic alignment; Branigan et al., 2007), and 

speaking rate (Manson et al. 2013), as well as coordinate the 

position of their gaze (Richardson & Dale, 2005). 

Furthermore, human individuals may imitate each other’s 

facial expressions (McIntosh, 2006), postures, gestures, etc. 

(Chartrand & Van Baaren, 2009). In some cases, patterns of 

synchrony emerge in groups even when individuals are not 

directly interacting. For example, Konvalinka et al. (2011) 

found that, during fire-walking rituals, the heart rates of fire-

walkers and spectators become synchronized. In some cases, 

these effects may simply be the result of multiple individuals 

with similar perceptual systems entraining to the same signal 

in a shared environment. Nonetheless, these effects may still 

have functional relevance for human behavior, such as 

increasing social cohesion (Konvalinka et al., 2011). In line 

with this idea, a study on real-life dating interactions by 

Prochazkova et al. (2022) found that attraction between dating 

partners was best predicted by synchrony in heart rate and skin 

conductance—bodily reflexes that are covert, unconscious 

and difficult to regulate consciously. 

In some cases, the rhythmic patterns that emerge across 

individuals are more complex than simple alignment or 

synchrony, and are better described as “synergy”—these are 

cases when rhythms across individuals are coordinated in a 

meaningful way, compensating for and complementing one 

another, but are not identical. Even patterns of this kind may 

emerge spontaneously (i.e. self-organize) without the 

conscious awareness of the individuals involved (Dale et al., 

2013). For example, Patil et al. (2020) reported the results of 

a dyadic shepherding task in which two human participants 

each control a virtual “shepherd” in a 2D space in order to 

wrangle virtual “sheep,” which are repelled by the shepherds, 

into a target location. Even in the absence of visual or linguis- 
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tic communication between humans, dyads can spontaneously 

fall into a pattern of coordinated movements that optimizes 

performance on the task.  

In all of these cases, small groups of humans engaged in joint 

tasks begin to perform as if they are one mind extended across 

multiple individuals. For example, while a common theory of 

language use is that individuals attempt to minimize 

communicative effort for themselves, recent work from 

Rasenberg et al., (2022) found that dyads engaged in 

conversation during a joint task actually minimize the joint 

cost of multimodal communication. Or consider results from 

the joint Simon task. The standard Simon task is a measure of 

conflict resolution in which one individual responds by 

pressing a button on the left for one stimulus (e.g. a red circle) 

and a button on the right for another stimulus (e.g. a blue 

circle). These stimuli may be presented on the left or right side 

of a screen in a way that is either congruent with the response 

(e.g. a red circle on the left side of the screen, requiring a left-

button response) or incongruent (e.g. a blue circle on the left 

side of the screen, requiring a right-button response), and 

response times are slowed for incongruent trials. In the joint 

Simon task, each of two individuals is responsible for 

responding to only one stimulus type, and therefore one 

button, which might be expected to eliminate any congruency 

effect. Nonetheless, the same congruency effect emerges, 

which has been taken as evidence that each individual 

mentally represents the task requirements of their partner 

(Dolk et al., 2014; Sebanz et al., 2006). Results such as these 

suggest that small groups of humans engaged in joint 

activities actually begin to process information as if they are 

a single entity. 

Perhaps one of the most complex scenarios in which 

collective intelligence may emerge in small groups of humans 

is that of joint musical improvisation. Improvisation is a 

medium that can express creativity, consciousness, and 

intuition (Pressing, 1994). Creativity, in particular, is often 

considered a consummate example of human intelligence, and 

is often viewed as a stage-like process taking place inside 

individual minds. However, joint improvisation reveals that, 

at least in some cases, creative activity is in many ways a 

collective effort that develops spontaneously through 

interpersonal coordination. Although creative improvisation 

from groups may seem methodically planned from an 

audience perspective, the output of the ensemble may be the 

result of perceptual and physical interactions from emergent 

coordination. In emergent coordination, individuals may act 

in a coordinated fashion, but this is not due to shared 

knowledge or a common pre-established goal. In support of  

these ideas, Seltzer et al. (2018) found that critical musical 

transitions during joint jazz improvisation (transitions 

between one texture or style and another) were preceded by a 

brief increase in entropy. This same signature has been shown 

to predict critical transitions in many other natural, distributed 

systems, such as ecosystems. These findings suggest that joint 

musical improvisation shares important properties with many 

other systems that self-organize into adaptive regimes, 

without the influence of any central controller. 

Instead, emergent coordination is often due to a tendency to 

match the actions of individuals that are being observed, 

known as perception-action matching (Knoblich et al., 2008). 

Perception-action matching may also facilitate “action 

simulation,” or the prediction and anticipation of upcoming 

actions of an observed individual (Knoblich et al., 2011). In 

the case of music improvisation, these two abilities allow 

accompanying musicians to anticipate the actions of the 

leading improvisor in order to compliment the solo (Sawyer, 

2006).  

When multiple individuals are coupled together by these 

matching and anticipatory processes, the end result is often a 

product that is something more than the sum of the individual 

contributions (Gorman et al., 2017). For example, there could 

be melodic and rhythmic ideas produced by the ensemble as a 

whole that would otherwise not be present without the 

ensemble’s collective interaction. In line with this claim, 

studies on interpersonal coordination generally report that an 

individuals’ joint behavior is distinct from the sum of 

behaviors produced by each individual alone. For example, 

when partners create spontaneous motion together, their 

personal signatures of movement (observed during individual 

performance) can no longer be recognized, and new 

signatures of movement emerge (Hart et al., 2014). This work 

suggests that emergent coordination between individuals 

forms unique signatures of improvisation that would not exist 

outside of that interaction. Similarly, interpersonal 

coordination at a much larger scale of culture leads to 

phenomena that could not exist in smaller interactions, as we 

will consider in the next section.  

6. Culture as collective intelligence 

Decades of research in cultural evolution, anthropology, and 

other social and ecological sciences have posited that the 

“secret of our success” as a species is our capacity to learn 

collectively (Henrich, 2015; Laland, 2018). The ways by 

which we engage in social learning and manipulate our 

ecological niche have bestowed us with capacities to comula- 
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tively “ratchet up” our cultural evolution—build innovations 

upon innovations—in what can be described as a thoroughly 

collective process (Tennie et al., 2009; Cazzolla Gatti et al., 

2020). 

We argue that human cultures’ tendency to learn and develop 

socially implies that, in practice, all our knowledge and 

intelligence is at least to some degree collective. Research in 

behavioral ecology and cultural evolution tends to distinguish 

between “individual” and “social” learning (Hoppitt & 

Laland, 2013; Heyes, 1994). This is in many cases a useful 

distinction, especially when modeling social diffusion, 

innovation, evolutionary trade-offs, and so on. However, 

contemporary humans’ lifeways are so thoroughly culturally 

embedded that few (if any) kinds of learning can truly be 

considered as entirely “individual”. 

Social learning is often defined in terms of learning that is 

“facilitated by observation of, or interaction with, another 

individual or its products” (Heyes 1994; Hoppitt & Laland, 

2013). Given that today practically all human development 

occurs within cultural contexts, it is questionable whether any 

form of learning would fall entirely outside the scope of this 

definition. Humans develop in an environment that is a 

cultural product: we are the ultimate niche constructors 

(Laland, 2018; Laland et al., 2001), creating environments and 

institutions that facilitate both social learning (think: schools, 

universities, workshops) and individual trial-and-error 

learning. In such a world, even autodidactic learning is 

culturally mediated. For example, could you learn to play a 

guitar if an artisan had not crafted it, or if a cultural continuum 

of woodwork traditions (see Ennos, 2020) had not afforded 

the tools and methods for constructing the instrument? 

Research has shown how human cultures often organize the 

world in ways so that the next generation has increasing 

amounts of affordances for social and individual learning 

(Sterelny, 2012). Indeed, this is one driver for the exponential 

diversification of human technologies over time (Cazzolla 

Gatti et al., 2020). 

In such a context, truly “individual” learning must be 

exceedingly rare. Accordingly, some have argued that most 

learning is “hybrid learning”: human individuals acquire skills 

through socially mediated trial and error and culturally 

evolved practice (Sterelny, 2012). Of course, one could argue 

that humans still have innate predispositions to be adept 

individual learners (see, e.g., Heyes, 2018), although research 

in gene-culture coevolution suggests that even our individual-

level cognitive mechanisms have likely been thoroughly 

shaped by our species’ collective history as social animals 

(Schaik & Burkart, 2011; Thompson et al, 2016).  

This collective intelligence of human cultures has recently 

been called the “collective brain” (Muthukrishna & Henrich, 

2016). The notion of the collective brain or collective 

intelligence has put into question many persistent myths about 

innovation and ingenuity. For instance, research has 

illustrated how innovation is to a large degree recombination, 

involving the reuse of pre-existing components in novel 

contexts (Muthukrishna & Henrich, 2016; Arthur, 2009). 

Science, too, is much less a feat of “lone geniuses” than a 

collective search process which involves high degrees of 

fiduciary relations and reapplication of previously useful 

solutions (Polanyi, 1957; Wu et al., 2022). 

Given that cumulative cultural evolution is a fundamentally 

collective process (Migliano & Vinicius, 2021), it should 

come as little surprise that cumulative cultural evolution has 

been shown to be driven by a number of demographic factors, 

which are largely independent of the qualities of individuals 

that make up the group. For example, larger groups often 

produce more innovation and cultural diversity (Kline & 

Boyd, 2010; Derex et al., 2013), but these effects are very 

sensitive to network structure (Kobayashi et al., 2016). 

Intermediate levels of clustering, for example, seem to 

maximize accumulation over time by balancing a trade-off 

between local innovation and global recombination (Derex et 

al., 2018): innovations in a cluster are protected from 

homogenization but can still recombine with information 

from neighboring clusters (Derex & Mesoudi, 2020). 

Population turnover also appears to drive cumulative culture, 

because naïve individuals are less conservative and more 

likely to discover efficient solutions (Chimento et al., 2021; 

Falandays & Smaldino, 2022). Finally, the types of cultural 

networks that emerge can be driven by the evolutionary 

pressures facing collectives, for example with selection for 

generalist learning favoring the evolution of sparser and 

modular networks (Smolla & Akçay, 2019). 

Even if one accepts that human intelligence is largely 

attributable to experience within a collective, a skeptic might 

suggest that learning from others is still largely an individual 

process. In response to this, we would point out that social 

learning strategies—biases and heuristics that help us get the 

best information from others—have also tightly coevolved 

with collective structure. For example, conformity is a 

common strategy across a variety of domains (Youngblood, 

2019) that allows us to quickly collect adaptive information 

(Aplin et al., 2017), but only under certain conditions. The 

strength and utility of conformity appears to increase with 

group size because there is more information to choose from 

(Muthukrishna et al., 2016). The utility of conformity tends to  
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decrease with the proportion of strong conformists, because 

fewer innovations are able to spread (Kandler & Laland, 

2013). Similarly, payoff bias (i.e., bias for information with 

highest payoff) is most effective when population size is high 

(Henrich, 2004; Hudson & Creanza, 2022), and negativity 

bias (bias for emotionally negative information) is stronger 

when networks are less dense (Fay et al., 2021).  

A byproduct of this coevolution between learning strategies 

and demographic structure is that major changes in the latter 

can reduce the adaptiveness of social learning strategies. In 

global and interconnected online communities, tendencies to 

defer to prestige or attend to negative messages might enhance 

the spread of misinformation or conspiracy theories (Acerbi, 

2016; Youngblood et al., 2021). In declining animal species 

with learned migration and foraging routes, tendencies to 

conform might reduce their ability to respond to human-

induced environmental changes (Barrett et al., 2019). And in 

rapidly changing environments, such as those experienced in 

the Anthropocene, collectively evolved problem-solving 

strategies may become outdated and face cultural 

evolutionary mismatch (Morgan et al., 2022; Kaaronen et al., 

2021). Generally, collectives with more diverse and flexible 

learning strategies are probably better at exploring and 

exploiting adaptive knowledge over time (Molleman et al., 

2014; Kendal et al., 2018; Morgan et al., 2022). These 

findings suggest that we cannot fully understand the 

adaptiveness of strategies used by individuals to learn from 

others without considering how these mechanisms have been 

shaped by our evolutionary history within a collective, and the 

potential (mis)match to present contexts. 

Other decision-making strategies, too, are culturally inherited 

products of collective intelligence. Rationality is 

stereotypically portrayed as being one of the most 

individualistic features of social and especially economic life. 

However, at closer inspection, even rational decision-making 

is suspect to collective influence. Firstly, even if humans were 

fully rational agents, our rational judgments would be based 

on sets of axioms that can’t be justified or derived from logic 

alone (Callebaut, 2007). Simon (1983) called this the Original 

Sin of reasoning: rationality and reason go to work only after 

they have been “supplied with a suitable set” of inputs or 

premises. Whatever preferences or premises a rational agent 

might have (what they choose to maximize, optimize, or 

prioritize) are largely cultural inputs. This is not only evident 

in culturally variable responses to economic games (e.g., 

Henrich et al., 2010), but also in everyday politics. For 

instance, economies around the world are currently struggling 

with whether we should optimize for environmental welfare 

or economic growth, with culturally variable responses that 

affect the lives of billions of individuals. 

Second, by now it has been well accepted that humans do not 

have access to the cognitive capacities or environmental 

stabilities that would allow for completely rational decision-

making (Simon, 1957; Todd & Gigerenzer, 2012; Gigerenzer 

& Selten, 2002). Rather, humans are boundedly rational, using 

various sets of culturally evolved heuristics and biases to 

solve problems and make decisions (Todd & Gigerenzer, 

2012; Kaaronen et al., 2021; Jiménez & Mesoudi, 2019). In 

our everyday lives, we largely make decisions based on 

culturally inherited rulesets, heuristics, and “rules of thumb” 

(Kaaronen et al., 2021; Kaaronen, 2020). Because cumulative 

cultural evolution is collective, not everyone needs to know 

how or why these heuristics work for them to function. 

Indeed, many case studies exist of humans solving problems 

with heuristics without understanding the causal mechanisms 

underlying their success (Henrich, 2015; Kaaronen et al., 

2021). In sum, as boundedly rational agents, we have a 

tendency of “offloading” our decision-making strategies to 

our cultural environment. Culturally inherited rulesets guide 

our problem-solving in various everyday domains, such as 

cooperation, technological evolution, food choice and mate 

selection (Henrich et al., 2001; Kaaronen et al., 2021). 

7. Evolution as collective intelligence 

Throughout this paper, we have emphasized how an 

evolutionary perspective on intelligence highlights the 

importance of collective dynamics. Interestingly, evolution 

itself, as a description of a general process of several systems, 

can also be described as a form of collective intelligence. 

While many may view the process of adaptation or similar 

fundamental evolutionary dynamics as processes affecting 

single units—e.g., in the framework of “selfish genes” or of 

individuals outcompeting other individuals—a primary 

question in nearly any evolutionary framework is how 

adaptations (or non-adaptations, when generally speaking of 

traits) can either be discovered or become fixed in a 

population (Dawkins, 1976; McCandlish & Stoltzfus, 2014). 

When explored via this group lens, it is easy to see how any 

question about adaptation on a population level becomes one 

of collective intelligence. 

Indeed, one of the most popular analogies used to model 

collective intelligence, that of the fitness landscape, has its 

origins directly in biology. Conceived by Sewell Wright in the 

1930s, fitness landscapes have come to find direct transfer in 

problems of optimization, of group behavior, and complex      

.. 
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systems (Kauffman & Levin, 1987; Wright, 1932; Zou et al., 

2022). Wright, who saw the discovery of novelty as the central 

problem of evolutionary biology, used the analogy of a 

landscape comprised of fitness “valleys” and “peaks” to think 

about both the distribution of different traits in a population of 

individuals and the potential distribution of traits a population 

could acquire (Wright, 1982). A central issue for the theory of 

natural selection in Wright’s view was how it was that a 

population at any given sub-optimal peak could traverse 

fitness valleys, where populations would have to undergo 

fitness losses, to discover fitness peaks higher than the ones 

they are currently on. In other words, what are the 

mechanisms by which a population could increase its fitness 

in the long-term by shedding its current fitness gains and 

decreasing its fitness in the short term? The answer for Wright 

formed the basis of the now somewhat controversial Shifting 

Balance Theory (Wright, 1932, 1982). Wright’s answer was 

that the ideal population on the fitness landscape was one in 

which the global population subdivides into subpopulations 

with limited gene flow between them. By sub-dividing in this 

manner, sub-populations would drift away from the global 

population’s local optima where individual units could more 

efficiently explore the overall landscape, discover local 

adaptations, and, through migration, transfer these local 

adaptations to the global population. 

Wright’s exploration of this topic led to controversy between 

him and another founder of population genetics, R.A. Fisher 

(Fisher & Ford, 1950). Fisher saw the primary question of 

evolutionary theory that of gradual adaptations and 

refinement (Fisher, 1958a). His question was how is it that, 

with variation, the global average fitness of a population 

increases over time and how is it that adaptations fixate in a 

population? For Fisher, Wright’s explanation would lead 

populations towards randomness, with random drift towards 

non-specified, hypothetical, and, for some populations, non-

existent global optima leading to net fitness losses in 

populations (Fisher, 1958b). Yet in another lens, the useful 

applications of both the theoretical frameworks developed by 

Wright and Fisher may point to the observation that the nature 

of the argument they had with one another was not one of 

empirical processes, but one of emphasis. As noted by (Wade 

& Goodnight, 1998). Wright’s central question was one of 

discovery of novelty and Fisher’s central question was one of 

the refinement of existing adaptations. In the parlance of 

modern collective intelligence, the mechanism Wright 

proposed was one of exploration, while the mechanism Fisher 

proposed was one of exploitation (Toyowaka et al., 2014). 

 

The generalizability of Wright’s arguments to collective 

intelligence is not novel, as there is one evolutionary thinker 

whose similar conceptualization of Wright’s framework have 

gained much prominence outside of biology in his own studies 

of cultural evolutionary and market-based processes: 

Friedrich Hayek. Similar to Wright, a central problem for 

Hayek was how information could be distributed and 

dispersed in a population in the absence of central control, 

what he referred to as the “economic calculation problem” 

(Hayek, 1935). In a formulation of the “local knowledge 

problem,” Hayek argued that local, dispersed, and incomplete 

knowledge held by individuals within a market system allow 

for the rapid adaptation of the market to inputs and outputs in 

the economy (Hayek, 1945). Hayek saw the emergence of a 

central intelligence, in the form of the price system, as being 

one way in which distributed systems create the appearance 

of a central actor. As noted in his essay, The Use of Knowledge 

in Society (1945), “The mere fact that there is one price for 

any commodity—or rather that local prices are connected in 

a manner determined by the cost of transport, etc.—brings 

about the solution which might have been arrived at by one 

single mind possessing all the information which is in fact 

dispersed among all the people involved in the process.” The 

similarity between the use of local knowledge at scale in both 

Hayek’s frameworks and in Wright’s should be noted (nor is 

it a sheer coincidence: Hayek and Wright overlapped with one 

another at the University of Chicago for a period of four years 

where they worked together on a seminar on evolution 

(Caldwell, 2008). 

Central to Wright and Hayek’s theories was one form of 

biological selection which placed the performance of a group 

at the center of the analytical framework now referred to as 

group selection (Hayek, 1973; Wright, 1982). Per Wright’s 

formulation, the forces of selection act not only on the 

individual members of a group and their fitness outcomes, but 

on the preservation and survival of groups competing with one 

another. Consider a system in which competition between 

groups takes place. In one group, individuals within the group 

compete with one another for their limited resources, 

maximizing their individual gains. In another group, 

individuals forego some of the same benefits acquired by 

other groups in order to ensure group survival. In situations 

like these, the group in which individuals exchange some 

personal cost for group benefits will outcompete the other. In 

Hayek’s crude view, the evolution of many forms of society 

which he deemed “the results of human action, but not of 

human design,” were explained by invoking group selection 

(Hayek, 1967). Many of these behaviors, while both non-         

.. 
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rational and incompatible with individual human moral           

intuitions, such as the institution of private property and the 

large-scale acceptance of inequality found in modern 

capitalist states, could only be posited as being evolved 

through a process of group selection. As stated in his address 

to the 33rd Meeting of Nobel Laureates at Lindau, “mankind 

was civilized by a process which is intensely disliked by being 

made to submit to rules which it neither could understand nor 

liked… the mechanism of selection was that those groups 

were selected, which thanks to the institution of private 

property were able to multiply faster than others” (Hayek, 

1983). 

Strict forms of group selection remain controversial in biology 

writ large (Okasha, 2001; Wilson, 1983). Despite these 

challenges, cases like kin selection, where genetically related 

individuals cooperate to allow for the perseverance of genes 

common in their relatives, and cultural evolution, where the 

units which allow group-selective behaviors to propagate are 

non-genetic, allow for the emergence of altruistic behaviors 

similar to those postulated by a theory of group selection 

without conforming to the traditional group selection 

paradigm (Hamilton, 1964; Maynard Smith, 1964; Richerson 

et al., 2016). Nevertheless, even in the absence of group 

selection as its mechanism of employment, one can see how 

the process of filtered change in the form of natural selection 

acting on any level leads to a collective intelligence that 

extends beyond the fitness and lifespan of any single 

individual. 

8. Summary 

In this position piece, we have presented examples of 

collective intelligence in a variety of systems, emphasizing 

that similar abstract principles of communication, 

cooperation, and competition underlie the emergence of 

intelligent behavior in groups of various species and at various 

spatio-temporal scales. Since we have covered a lot of ground, 

a brief summary is in order before we conclude. In Section 1, 

we began with canonical examples of collective intelligence 

in non-human animals, such as the flocking, swarming, or 

schooling behavior of birds, insects, and fish, and emphasized 

the diversity of systems in which collective intelligence may 

arise: collective intelligence can emerge in groups of closely 

genetically-related individuals of the same species, but also in 

groups of distantly-related individuals or even individuals of 

different species; collective behavior is sometimes obligatory, 

and other times systems may switch between collective and 

individualistic modes; and collective intelligence is 

sometimes driven by mechanisms of cooperation, but other 

times by competition. The overarching point we hope to 

establish here is that systems with many different parts and 

many different mechanisms of interaction have the potential 

to facilitate self-organization of groups of individuals into 

regimes that are capable of dealing with a variety of cognitive 

problems, including search, predator-avoidance, memory, and 

decision-making. These examples suggest that there is little 

reason to expect collective intelligence to be restricted to any 

particular species or spatio-temporal scale of activity. 

In Section 2, we next considered systems that are not always 

thought of as examples of collective intelligence—

multicellular organisms—but emphasized that similar 

mechanisms as observed in groups of non-human animals 

may facilitate the interaction of single cells to produce 

complex, adaptive behavior without a central controller, 

including morphogenesis (the formation of a body through 

development). We also briefly considered the evolution of 

obligatorily multicellular systems from single-celled 

organisms that sometimes switch into a multicellular mode. 

This evolutionary trajectory points to a role for group-level 

selection, wherein groups of cooperative individuals may 

propagate over groups of competitive individuals, despite 

potentially sacrificing individual reproductive success to 

some extent. We suggest that natural selection may act at the 

group-level in this way to hone mechanisms that facilitate 

collective behavior in any type of system, including groups of 

humans. 

The discussion of multicellular collective intelligence sets the 

stage to begin considering the brain as an intelligent 

collective, in cooperation with a massive community of cells 

that constitutes an entire body. In Section 3, we argued against 

a view of the brain as a serial-processing machine with highly-

localizable functions and representations, like a man-made 

computer. Instead, we emphasize that a brain is a collection of 

living cells struggling for survival. By virtue of mechanisms 

of competition, such as synaptogenesis/pruning and mutual 

inhibition, and mechanisms of cooperation, such as energy-

sharing through spiking behavior, these collections of cells are 

able to rapidly self-organize into different patterns of 

functional connectivity that are adaptive at the group level 

with respect to a current task and context. For these reasons, 

we prefer to view the brain as one end-point of a continuum 

of collective behavior, in which the collective has become 

particularly inter-dependent and efficient. Nonetheless, we 

emphasize that the principles that make brains intelligent 

remain best-understood as principles of collective self-

organization. 

Next, in Section 4, we moved up to the spatio-temporal scale 

of dyads or small groups of humans engaged in joint-action 
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and considered how the dynamics of collective behavior in 

individual brains and bodies may scale up to incorporate 

multiple brains and bodies. Here, we considered how multiple 

individual brains and bodies may intertwine their action-

perception loops, developing particular phase-relationships in 

their neural signals and behaviors that facilitate group 

performance. Sometimes these phase-relationships are rather 

simple, such as synchrony or turn-taking, but in other cases 

they are more complex and dynamic. Joint musical 

improvisation provides an interesting example of the latter, in 

which two or more individuals may dynamically change 

between leading- and following-behavior and produce 

complex temporal patterns without explicit planning or 

organization. This example also serves to show how 

creativity, which is commonly thought of as an individual, 

high-level cognitive process, may emerge naturally from local 

perception-action couplings within a group. 

In Section 5, we moved up yet another spatio-temporal scale 

to consider the collective dynamics of large groups 

constituting societies and/or cultures. Here, we emphasized 

that humans are a consummately cultural species, with almost 

every aspect of our learning, development, and behavior being 

influenced by social interaction. We described how cultural 

progress is dependent upon many demographic factors, such 

as population size, network structure, and population 

turnover. As such, examples of cumulative culture, such as the 

progress of science, can be understood as a collective search 

process, rather than simply the sum output of “lone geniuses.” 

Even in contexts where individual learning appears important, 

we highlight how individual learning mechanisms have been 

shaped over evolutionary time by our history as a social 

species, and are influenced in the present by a socially-

constructed niche of environments and institutions. This 

illustrates the important point that collective intelligence does 

not just scale “upwards” (i.e. from cells to brains to cultures), 

but may also act “downwards,” with new scales of collective 

behavior constraining the continued development of lower 

spatio-temporal scales. 

Finally, in Section 6, we considered how evolution as a whole 

may be thought of as a form of collective intelligence. 

Evolving populations may be thought of as traversing a 

dynamic “fitness landscape,” with individual phenotypes 

occupying a point on this landscape. Wright’s Shifting 

Balance Theory suggests that species may optimize the search 

process through this landscape by forming sub-populations 

with minimal genetic exchange, allowing phenotypes in these 

sub-groups to drift apart and thereby search more of the fitness 

landscape. This dynamic mirrors the discussion of collective 

search in cultures, where sparse networks of information 

exchange can prevent groups from settling into local optima. 

Additionally, in Section 6 we again emphasized the 

importance of group-level selection, whereby the fittest         

groups of organisms increase in frequency. This kind of 

mechanism may be a key reason why collective intelligence 

emerges in so many systems, at so many scales of analysis, 

even when it involves mechanisms whereby individual 

members of a group sacrifice reproductive success for the 

good of the group. However, we point out that even in the 

absence of group-level selection, other mechanisms such as 

kin-selection can facilitate the emergence of collective 

behavior. 

8.1 The benefits of viewing all intelligence as collective 

intelligence 

Our claim that “all intelligence is collective intelligence” is 

intended not as expressing a strong metaphysical stance, but 

instead a pragmatic one. We have no qualms with speaking of 

“individual intelligence” if or when such a stance is useful. 

However, there are two major reasons why we consider it 

generally more useful to understand intelligence as a process 

instantiated by groups, rather than as a property of 

individuals. First, we hope the foregoing discussion makes a 

strong case that clear examples of individual intelligence are 

likely few and far between. If intelligent behavior, from 

multicellular systems up to human culture, is driven primarily 

by the cooperation and competition of individuals with only 

local information, we ask what is left to be called “individual 

intelligence”? We believe that if mechanisms of collective 

behavior do most of the heavy lifting in explanations of 

intelligence, then viewing all intelligence as collective is the 

most parsimonious stance and confers the greatest 

explanatory power across domains.  

Second, and perhaps more importantly, we suggest that this 

stance may benefit research into intelligent behavior by 

facilitating cross-disciplinary exchange. Given that similar 

abstract principles are present in systems as diverse as swarms 

of insects, temporary collections of single-celled organisms, 

brains, small groups of humans, and entire societies, 

researchers in each of these areas may have much to gain 

through collaboration and communication (after all, we have 

argued that science too is a collective endeavor!). 

Research in cognitive science already has a long history of 

interdisciplinarity upon which to build in the study of 

collective intelligence. For example, models of population 

genetics originating in biology have been applied to cultural 

evolution (Liu & Stout, 2022), models originating in statistical 

mechanics, such as the Ising model, have been applied to 
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collective behavior and brain dynamics (Kozhin, 2022), and 

models originating in classical mechanics, such as coupled-    

oscillator models, have been applied to the study of individual 

behavior, joint-action, and neural activity alike (Kelso, 2021). 

We suggest that an explicit recognition of the shared 

mechanisms of intelligence behavior across scales may 

facilitate discovery at all of the scales. 

As one concrete example of the benefits that may be gained 

through such a perspective, consider the field of artificial 

intelligence (AI), which has deep historical ties to the concept 

of collective intelligence. AI as a discipline grew out of 

pioneering research on the behavior of social organizations: 

Herbert Simon and Allen Newell’s Logic Theorist (Newell   

&Simon, 1956), one of the first AIs, was explicitly based on 

the bureaucracies that Simon had studied earlier in his career. 

Marvin Minsky (1988), who conducted pioneering work in 

neural network analysis (but also had a major role in 

discouraging further exploration for many years), imagined 

AI as a “society of mind” composed of many “mindless” 

interacting agents whose intelligence unfolded in complex 

patterns of emergent coordination much like cells in an 

organism or neurons in a brain.  

Since the 1990s, we have seen a growing number of practical 

algorithms in AI that work by organizing the efforts of many 

agents to a collective end, from ensemble methods that 

combine the inputs of many classifiers to differentiable games 

that match machines against each other and against 

themselves. In recent years, research in machine learning has 

gravitated toward such techniques due to their spectacular 

performance in unsupervised image and natural language 

tasks. A crucial feature of these methods is the way in which 

agents interact, and the degree to which that interaction is 

tailored through the careful composition of loss functions. 

There are many examples of this: generative adversarial 

networks (GANs; Goodfellow et al., 2020), adversarial 

training (Goodfellow et al., 2014), intrinsic curiosity modules 

for reinforcement learning (Pathak et al., 2017), warped 

gradients for meta-learning (Flennerhag et al, 2019), 

hyperparameter optimization through implicit differentiation 

(Lorraine et al., 2020), and so on. Much like the Logic 

Theorist or Minsky’s society of mind, many of these 

algorithms are reminiscent of extant institutional patterns in 

economics and the social sciences—there is clearly a pattern 

in which the intelligence of the whole is a product of the 

“intelligence” of the parts that is in some ways reminiscent of 

social choice theory (e.g. aggregation of experts in boosting 

and bagging) and in other ways more reminiscent of emergent 

collaboration in biological contexts (e.g., early subsumption 

architectures; Brooks, 1986). We take this work as an illustra- 

tion of the scientific progress that may be gained through an 

explicit recognition that all intelligence is driven by collective 

dynamics. 

Another beneficial side-effect of adopting our perspective 

may lie in helping to avoid the “homunculus problem” 

associated with the computer metaphor of mind—the fallacy 

that the intelligence of humans can be explained by recourse 

to an intelligent agent inside the head, who “reads” the activity 

of the brain. Views of cognition that entail the existence of a 

homunculus are not only logically problematic, but also may 

falsely imply a distinction between what goes on in human 

brains, and what goes on in intelligent collectives, which 

clearly lack a central executive. In Section 5, we described 

how collective interactions in the human brain can contribute 

to intelligent adaptive behavior, without requiring one to posit 

the existence of internal representations nor a homunculus 

who reads these representations. This work illustrates how 

viewing the brain as an intelligent collective can not only help 

to address issues in the study of individual human cognition, 

but can also put the study of human cognition into dialogue 

with the study of many other systems. 

9.  Conclusion 

In conclusion, we believe that research in many areas—

including animal behavior, multicellular intelligence, 

neuroscience, human cognition, joint-action, cultural 

evolution, biological evolution, and AI—may have much to 

gain by adopting the perspective that all intelligence is 

collective intelligence. Importantly, while we have 

emphasized the parallels between intelligent behavior in each 

of these domains, we are by no means suggesting that all of 

these systems are the same. To the contrary, our perspective 

may also help to clarify the dimensions that differentiate 

forms of intelligence across domains. Some relevant 

dimensions of difference that have emerged in our discussion 

include spatiotemporal scale, interdependence of elements, 

rate of information transfer, task diversity, network structure, 

transient diversity (i.e., the degree to which elements of a 

system resist consensus), and mechanisms of interaction (e.g., 

collaboration vs. competition). By elaborating how these and 

other potential dimensions influence the dynamics of 

collective intelligence, we may move towards a truly general 

theory of intelligence, furthering both our understanding of 

the natural world and our ability to design intelligent systems. 
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