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c hat is life?’ and ‘what could life be?’ 
are central questions in the inter- 

disciplinary field of Artificial Life (A-Life). 
It tries to subsume all of the conventional 
domain of the biological sciences (B-Life) 
and it can make fundamental contribu- 
tions to our understanding of B-Life pro- 
cessesrI*. However, a decade after the 
birth of A-Life, there are few reciprocal 
contributions between the A-Life and B- 
Life sciences. These two sciences con- 
verge most conspicuously in the devel- 
opment of genetic algorithms, which are 
computer-based models for creating open- 
ended evolving systems in A-Life in ad- 
dition to solving complex problems in 

engineering. Modern texts in evolutionary 
genetics rarely cite any A-Life pubii- 
cation+ and some biologists have con- 
sidered these genetic algorithms as com- 
puter exercises in pseudo-genetics: ad hoc 
treatments with a fragmentary theoretical 
basis of B-life genetics. Computer scien- 
tists, on the other hand, have found few if 
any useful theorems in evolutionary gen- 
etics that improve the adaptive perfor- 
mance of genetic algorithms or that per- 
mit the solution of complex problems (cf. 
Ref. 6). 

The goal of population genetics theory 
is to characterize and to discriminate 
among the several evolutionary forces 
that operate simultaneously in natural 
populations. The mathematical tools of 
the theory vary from simple linear algebra 
to statistical and stochastic diffusion mod- 
els. A major focus is the balance among 
evolutionary forces that maintains genetic 
variation in natural populations. The sig- 
nature of natural selection is detected by 
comparison with the predictions of null 
models where only the neutral forces 
(mutation and random drift) are operat- 
ing. Two extreme views coexist within 
formal evolutionary theory’. 

The fisherian worldview 

We discuss the general structure and 
findings of genetic algorithms (see defini- 
tion in Box 1) in the context of classical 

R.A. Fisher proposed that adaptation 
typically takes place in large and ran- 
domly mating population+s17~a. Random 
drift is negligible in this context and mu- 
tation and selection are sufficient to ex- 
plain patterns of genetic variation. Fisher’s 
fundamental theorem of natural selection 
(FFf’)s predicts that the rate of adaptive 
evolution of a population is determined 
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evolutionary and population genetics. The 
lack of reciprocal exchange between the 
fields results from the different questions 
each is trying to address. These differ- 
ences in central questions lead the fields 
to differ in the emphasis placed upon the 
evolutionary forces that consume or gen- 
erate genetic and phenotypic variations. 
Finally, we discuss the conceptual conver- 
gence between some A-Life models and 
the evolutionary genetic theories of 
Sewall Wright, and indicate some unex- 
plored avenues for two-way interactions 
between genetic algorithms and popu- 
lation genetics. 

Evolutionary aud population 
genetics 
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Box 1. Genetic algorithms Box 2. Holland’s GA 
There are four major genetic algorithms: Holland’s 
genetic algorithm (GA)26.*7, Koza’s genetic pre 
grammingz8, Fogel’s evolutionary programming2g 
and Rechenberg’s evolutionary strategie9. 
They differ from each other in the mechanisms 
of genetic coding, the selection procedures, 
and the genetic operations permitted in repro- 
duction31-33. The latter two methods adopt con- 
tinuous variables rather than discrete bit-string 
coding, and have the greatest similarity to the 
quantitative genetics in evolutionary biology. 

The figure shows the simplest example of Holland’s genetic algorithm (GA)*6.27. Parent bit-strings are 
decoded into decimal numbers, and the individual ‘01111’ is assigned a reference number of 15. This number 
is used to obtain a fitness value by referring to the static fitness function [f(x)] (shown above). The assigned 
fitness value is five, hence, the individual produces five offspring. Basically, the offspring are copies of their 
parents. However, the mutation operation allows bit-flips, and, in our example, two out of five offspring differ 
from their parents by one bit. The crossing-over operation changes the bit-string downstream ofthe crossing 
point. As a result, the bottom-most offspring differs from its parents by three bits. In the next generation, 
these offspring are decoded and evaluated with respect to the same fitness function as their parents. 

static fitness function 
f(x) 

There are also many hybrids and variants 
of these four genetic algorithms. In this article, 
we use the term ‘genetic algorithm’ to refer to 
this class of models as opposed to any specific 
model or variety. These genetic algorithms were 
invented for the common purpose of solving 
optimization problems in engineering. Because 
Holland’s GA (Box 2) is the most commonly 
used, we will discuss its central features, which 
are representative of the entire class of genetic 
algorithms, and compare these features with 
those of real biological systems. 

5 
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01111, - 1510 

* f(15)=5 3 
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r3010? crossing over mutation 
01011 

\;:x;;:, 
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by its additive genetic variance for fit- 
ness. Mathematical expressions of FFT 
permit analytical solutions at the expense 
of some of the flavor of living organisms. 
Complex adaptations involving the coor- 
dinated action of many genes are assem- 
bled one gene at a time, by natural se- 
lection acting on the average additive 
effects of allelesa. 

The wrightian worldview 
The other extreme view is Wright’s 

shifting balance theory (SBT)‘J describing 
the origins of evolutionary novelties and 
speciation in subdivided populations. Fi- 
nite local demes and epistasis between 
genes complicate the evolutionary trajec- 
tory of a specie&g. The scope of Wright’s 
theory is somewhat wider than that of 
Fisher because random genetic drift is 
considered an essential feature and there 
is the additional adaptive force of inter- 
demic selection. 

Although FFT acts locally within the 
SBT, describing selection within every 
deme, there is also a genetic nonlinearity 
constituent to individual phenotypes and 
their interactions. Thus, in the SBT, natu- 
ral selection is not immediately accorded 
the dominant role as in FFT. Instead, the 
importance of the different evolutionary 
forces depends upon the situation as 
strong selection at one locus reduces ef- 
fective size and enhances the probability 
of loss of alleles at other selected locilo. In 
this sense, the SBT provides only a frame- 
work within which evolution occurs as 
opposed to the better defined, determin- 
istic theory of Fisher. Ordinal mathemati- 
cal expressions for the nonlinear genetic 
systems of the SBT can be rendered but 
are complex. Furthermore, Wright himself 
considered his widely used method for 
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Box 3. Comparison of genetic operations between 
a simple genetic algorithm and biological systems 

Polnt mutation: in Holland’s genetic algorithm (GA) 26.27, the mutation operation flips a bit in a bit-string from 
1 to 0, or vice versa. In biological systems, point mutation changes one nucleotide base sequence into another. 
Crossing over: bit-strings and chromosome sequence exchange bits or bases, respectively, downstream 
of the cross-over point. 
Inversion: in Holland’s GA26.27, inversion causes reverse transcription of the inversed part, but the inversion 
causes the formation of a loop in biological systems that does not tend to be reverse transcribed. 
Epistasls: in Kauffman’s genetic algorithm13, each locus refers to other loci when decoded into phenotype. 
In biological systems, products encoded upstream regulate the transcription of the downstream genes. 

genetic algorithm biological algorithm 

0 101 Ol... AC C G AT T T 
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genetic algorithms 

small 
Mutational effect 

large 

Ffg. 1. Mutational effect. In evolutionary gen- 
etics most mutation events have minor effects 
on fitness. In contrast, the mutational effects 
are uniformly distributed in the rugged land- 
scape of genetic algorithms applied in A-Life. 

quantifying population genetic structure 
(F,,) as ‘wholly inadequate’, since it de- 
scribed only single genes and not gene 
combinationsg. 

Genetic algorithms 
Genetic algorithms (Boxes 1 and 2) 

were developed as a computational de- 
vice, wherein computer scientists adopted 
concepts and mechanisms from genetic 
biology and used them as rules for repli- 
cation and change in evolving computer 
life systems. An iterative genetic process 
might find optimal solution(s) for complex 
problems more efficiently than other com- 
puter algorithms. In A-Life studies, genetic 
algorithms are used as ‘darwinian random 
generators’ in place of optimization tech- 
niques. In the simplest genetic algorithms, 
genotypes are bit-strings consisting of l’s 
and 0’s. These bit-strings undergo oper- 
ations analogous to the processes that af- 
fect haploid mendelian chromosomes like 
mutation and crossing-over (Boxes 2 and 
3). Diploidy and multiple chromosomes 
are modeled by increasing the number of 
bit-strings per individual”. 

Sources of variation 
Heritable variation in fitness is necess- 

ary for darwinian evolution, and the bit- 
string populations of genetic algorithms 
have three sources of it. The first resides 
in the initial distribution of founder bit- 
strings, which are randomly generated. 
This is analogous to the ‘infinite-sites infi- 
nite alleles’ models, where each initial 
allele is assumed to be uniquerz. A second 
source lies in the genetic operators (Box 3) 
that create variation at bit-string loci, al- 
though this variation is mapped to pheno- 
type in a manner slightly different from 
the analogous processes in B-Life genetics 
(Box 3). Lastly, genetic algorithms create 
new variation by elongation of existing 
bit-strings, where each one-bit increase 
doubles the number of possible states. In 
B-Life models, gene copy numbers are 

unlikely to increase or decrease by 
fractional parts of the whole. 

Mapping genotype to phenotype 
There is wide variation among A-Life 

genetic models in mapping bit-string to 
phenotype (Box 1). In engineering appli- 
cations, one-to-one mappings are com- 
mon, similar to those of additive quanti- 
tative genetics. However, the one-to-one 
mapping restricts the range of possible 
phenotypes and limits the power of solv- 
ing complex problems. To compress larger 
numbers of phenotypes into a finite bit- 
string, a variety of nonlinear mappings 
have been considered. Kauffman’s NK- 
modelr3, for example, uses each bit many 
times to decode phenotypes and realizes . 
highly epistatic and pleiotropic interac- 
tions (Box 3). In such nonlinear systems, 
there is no continuity in the map: very 
small changes in bit-string result in very 
large jumps in phenotype space. This dif- 
fers from B-Life genetics in two ways. 
First, the distribution of mutational effects 
on phenotypes is centered near zero, be- 
cause most mutations are believed to have 
small effects and are neutral or nearly so 
(Fig. 1). Second, mutations of large effect 
are mostly deleterious. 

Fitness landscapes 
Ray’s TierraId model has succeeded in 

generating open-ended A-Life evolution, 
despite fixing the number of possible bit- 
strings because fitness is determined by 
the interactions among bit-strings, as in 
real ecosystems, and not an intrinsic prop- 
erty of a bit-string. Thus, the same bit- 
string can have high or low fitness, depend- 
ing upon its neighbors. Novel adaptations, 
such as mutualism and altruism, can oc- 
cur at the phenotypic level and coopera- 
tive or synergistic epistasis can evolve at 
the genie level. With the fitness scheme of 
Ray’s Tierra, the resulting rugged fitness 
landscape may permit interdemic selec- 
tion to affect the adaptive process. 

In B-Life genetics, constant gene and 
genotypic fitnesses may be assumed and 
restrict dimensionality at the expense of 
biological reality*sJj. Even complex gene 
interactions can be modeled as additive in 
their fitness and phenotypic effects in the 
vicinity of an adaptive optimum, where 
small deviations can be treated as being 
effectively linear. In contrast, most A-Life 
systems begin far from the global opti- 
mum (whose existence is not guaranteed) 
and the complexity of the bit-string-to- 
phenotype map is developed to facilitate 

Box 4. Conversion of epistatic to additive genetic variance 
by random genetic drift 

In (a), an individual’s phenotypic value increases with the numbers of AB gene combinations from small 
(when the individual lacks either an A allele or a B allele) to intermediate (for individuals with one A and 
one B allele) to large (when the individual has two A and two B alleles). 

When random drift changes allele frequencies at one of two interacting loci, it changes the amount of 
additive genetic’variance segregating at the remaining locus. In (b), B is fixed but A remains segregating, 
and the genetic variance appears additive at the A-locus. In (c), b is fixed but A remains segregating, thus 
no additive variance is associated with the A-locus. 
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finding a solution to the problem at hand, 
if it exists. 

Molecular genetics and 
evolutionary theory 

Bit-strings in genetic algorithms can 
share four features of the molecular biol- 
ogy of DNA or RNA sequences. 

Neutral evolution 
Natural selection does not restrict 

the large majority of sequence substitu- 
tionsl2117. Patterns of synonymous base- 
pair substitutions, in particular, should 
be neutral in this sense and tend to sup- 
port the Neutral Theory of Evolution12. 
More-extended interpretations argue that 
the pool of neutral genetic variation may 
permit rapid evolutionary change of pheno- 
type under some circumstances12. 

Evolution by duplication 
The discovery of frequent gene dupli- 

cation and subsequent sequence diver- 
gence has contributed to the development 
of the theory of evolution by duplicationla. 
In this theory, a gene(s) may become dupli- 
cated and the influence of natural selection 
on its sequence can either expand or con- 
tract. A duplicated gene may sometimes 
double its enzymatic expression, gaining 
a selective advantage. Alternatively, one 
copy may become neutral and temporarily 
free from selective constraint, with its fate 
governed for a time by mutations and drift. 
It may become wholly dysfunctional (a 
pseudogene) or gain new function. In con- 
trast to neutral theory, gene duplication 
theory creates free genetic space to ex- 
plore for novel adaptations. 

Quasispecies 
Eigeni’J proposed a similar concept for 

describing evolution from RNA to DNA. He 
postulated a more or less stable RNA 
quasispecies consisting of adaptive vari- 
ants and the vast mutational array around 
them. A quasispecies was held together 
by the selective advantage of some cou- 
pled pairs over others. A quasispecies of 
RNA molecules thus persisted until re- 
placed by an adaptively superior constel- 
lation of interacting RNA molecules. An 
expanded information system (DNA) with 
a reduced error rate evolved from the 
RNA quasispecies because coupled pairs 
of variants could achieve what single vari- 
ants could not. Harvey’s species adap- 
tation genetic algorithm (SAGA) is based 
on this quasispecies hypothesisza. 

Disparity evolution 
Between A-Life and B-Life, Furusawa 

and Doi proposed the idea of disparity 
evolution21. This theory claims that the 
Y-shaped replication fork in DNA dupli- 
cation is adaptive because it results in two 
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kinds of strands: (1) the leading strand 
or masterpiece, duplicated almost with- 
out error; and (2) the lagging strand (pro- 
ducing Okazaki fragments), duplicated 
with a much higher error rate. As a result, 
after several DNA replications there is a 
much wider range of mutational variation 
among offspring strands than is the case 
when mutations are randomly distributed 
to both strands. Furthermore, the orig- 
inal, adaptive strand is conserved at the 
same time that extensive mutational vari- 
ation is created. This permits the popu- 
lation to explore more widely nearby 
adaptive space and, at the same time, con- 
serve previously selected gains in the 
masterpiece. They showed using a genetic 
algorithm that the rate of adaptive evolu- 
tion was enhanced by disparity mutations 
relative to that of a parity mutational 
process. 

Optima: near and far 

Common goals 

In A-Life, as opposed to evolutionary 
or population genetics, the goal is to de- 
velop a system that will both find optima 
and reciprocally change the fitness land- 
scape, making the evolutionary trajectory 
truly open-ended. In contrast, for the 
past 40 years, mathematical evolutionary 
genetics has focused primarily on forces 
affecting the origin and maintenance of 
genetic variability within populations that 
are already at an adaptive optimum. At 
mutation-selection balance, the disper- 
sive evolutionary forces act as an impedi- 
ment to adaptation because they move 
individuals (mutation and segregation) or 
even whole populations (drift) away from 
the optimum under natural selection. The 
method called evolutionarily stable strat- 
egy (ESS)22 is so focused on optimization 
that it substitutes a non-genetic, game 
theoretic approach for formal genetic 
models23. 

Figure 2 demonstrates a schematic re- A key component of theories in popu- 
lationship among evolutionary genetics, lation genetics, molecular genetics, and A- 
molecular biology and genetic algorithms. Life genetic algorithms, is the relationship 

F 

Molecular biology 

neutral 
evolution 

duplication 
evolution 

disparity 
evolution 

fisherian wrightian 

0 Tierra 

0 
SAGA 

EP and ES 
parallel I 

GA I 

schema 
theorem 

lg. 2. Schematic relationship among evolutionary genetics, molecular genetics and genetic algorithms. 
‘hree domains - population genetics (dumbbell shape), molecular biology (upper circle) and genetic algo 
lthms (lower circle) - are highly overlapping of one another. EP and ES represent Fogel’s evolutionary pro 
,ramming and Rechenberg’s evolutionary strategies, respectively (Box 1). Parallel GA is a genetic algorithm 
hat has been modified to maximize its performance in a parallel computer architecture. SAGA represents 
iatvey’s species adaptation genetic algorithm20. Tierra refers to Ray’s Tierra modeW. 
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between sources of mutational variation 
and the evolutionary effects of mutations. 
Fisher and Wright consider classical mu- 
tational processes, where novel variants 
are more likely to reduce adaptation than 
to enhance it. In these models, there is a 
balance between (1) purifying natural se- 
lection, (2) pushing deleterious mutations 
out of populations, and (3) mutation re- 
introducing deleterious variants. There are 
some differences between m and SBT. In 
FFT, mutational variation is consumed by 
natural selection, while under SBT it can be 
transformed by random drift from epistatic 
to additive variance or from withindeme 
to among-deme variance8JQ5 (Box 4). In 
contrast, in A-Life models, mutations of 
large effect play an essential creative role 
in exploring the fitness landscape, which 
itself can be quite rugged, lacking the con- 
tinuity of B-Life systems. 

Efficient adaptive walks 
The strong message for successful on- 

going adaptive evolution from the A-Life 
genetic algorithms is ‘Keep a masterpiece 
and, at the same time, continue to explore 
adaptive space with mutational variants.’ 
If a better local optimum is found, then 
change the masterpiece to the variant and 
restart the procedure again. Some theo- 
ries emphasize the exploring phase at the 
expense of selected gains (e.g. Kauffman’s 
NK-model), while in others the reverse is 
emphasized (Schema Theorem”Q7). 

Wright’s SBT is very similar in broad 
concept to these A-Life theories. In the 
SBT, random and directed processes give 
rise to adaptive gene combinations in 
local demes within a metapopulation. The 
better the local gene combination for 
adaptation, the greater the net emigration 
of individuals out of the local deme and 
into neighboring demes. Thus, the storage 
of selected gains is accomplished by pro- 
tecting the favorable gene combination 
within a deme from scrambling by recom- 
bination and from dilution by immigration, 
because the deme becomes a net sender 
as opposed to receiver of migrants. At the 
same time, the metapopulation continues 
to prospect for novel gene combinations 
of higher adaptive value by the local ac- 
tion of random drift, mutation, and selec- 
tion within demes. 

In Fisher’s scheme, selection cannot 
act directly upon interacting systems of 
cooperatively acting genes because of the 
opposing effect of recombination. Genes 
are heritable, while gene combinations are 
not. In large populations the average effect 
of a gene on fitness determines its evolu- 
tionary fate, and there is no way for the 
population to pass through a point of low- 
ered fitness in order to reach a favorable 
gene combination. Fisher’s process will 
climb to a local optimum but will not be 
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able to find some adaptive gene combi- 
nations, if the fitness landscape is rugged. 
The emphasis in Fisher’s worldview is on 
conserving prior adaptations and on dis- 
covering them gradually in small incre- 
ments with optimal mutation and recom- 
bination rates as opposed to discovering 
evolutionary novelties. 

Like Wright, EigerP criticized the fish- 
erian process for the origin of life because 
he felt that competitive natural selection 
alone could not have developed coopera- 
tive molecular pathways from prebiotic 
systems. The ‘interplay of molecular com- 
petition and cooperation is necessary to 
process and utilize the first genetic infor- 
mation’ and it is essential for stabilizing 
the earliest hereditary processes. In almost 
identical words, Wright viewed gene inter- 
action as essential to complex adaptations 
and proposed his SBT to permit the direct 
selection of adaptive gene combinations. 
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